Deep Learning for EEG Seizure Detection in Preterm Infants

被引:39
作者
O'Shea, Alison [1 ]
Ahmed, Rehan [1 ]
Lightbody, Gordon [1 ]
Pavlidis, Elena [2 ,3 ]
Lloyd, Rhodri [2 ]
Pisani, Francesco [3 ]
Marnane, Willian [1 ]
Mathieson, Sean [4 ]
Boylan, Geraldine [4 ]
Temko, Andriy [1 ]
机构
[1] Univ Coll Cork, Dept Elect & Elect Engn, Irish Ctr Maternal & Child Hlth Res INFANT, Cork, Ireland
[2] Univ Coll Cork, Irish Ctr Maternal & Child Hlth Res INFANT, Cork, Ireland
[3] Univ Parma, Med & Surg Dept, Child Neuropsychiat Unit, Parma, Italy
[4] Univ Coll Cork, Dept Pediat & Child Hlth, Irish Ctr Maternal & Child Hlth Res INFANT, Cork, Ireland
基金
爱尔兰科学基金会;
关键词
Neonatal EEC; preterm EEC; seizure detection; support vector machine; deep learning; transfer learning; EARLY MOTOR-ACTIVITY; NEONATAL SEIZURES; EPILEPTIC SEIZURES; CLASSIFICATION; RECOGNITION; ALGORITHM; FEATURES; BURSTS;
D O I
10.1142/S0129065721500088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
EEG is the gold standard for seizure detection in the newborn infant, but EEG interpretation in the preterm group is particularly challenging; trained experts are scarce and the task of interpreting EEG in real-time is arduous. Preterm infants are reported to have a higher incidence of seizures compared to term infants. Preterm EEG morphology differs from that of term infants, which implies that seizure detection algorithms trained on term EEG may not be appropriate. The task of developing preterm specific algorithms becomes extra-challenging given the limited amount of annotated preterm EEG data available. This paper explores novel deep learning (DL) architectures for the task of neonatal seizure detection in preterm infants. The study tests and compares several approaches to address the problem: training on data from full-term infants; training on data from preterm infants; training on age-specific preterm data and transfer learning. The system performance is assessed on a large database of continuous EEG recordings of 575 h in duration. It is shown that the accuracy of a validated term-trained EEG seizure detection algorithm, based on a support vector machine classifier, when tested on preterm infants falls well short of the performance achieved for full-term infants. An AUC of 88.3% was obtained when tested on preterm EEG as compared to 96.6% obtained when tested on term EEG. When re-trained on preterm EEG, the performance marginally increases to 89.7%. An alternative DL approach shows a more stable trend when tested on the preterm cohort, starting with an AUC of 93.3% for the term-trained algorithm and reaching 95.0% by transfer learning from the term model using available preterit data. The proposed DI, approach avoids time-consuming explicit feature engineering and leverages the existence of the term seizure detection model, resulting in accurate predictions with a minimum amount of annotated preterm data.
引用
收藏
页数:16
相关论文
共 54 条
[1]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[2]   Enhanced probabilistic neural network with local decision circles: A robust classifier [J].
Ahmadlou, Mehran ;
Adeli, Hojjat .
INTEGRATED COMPUTER-AIDED ENGINEERING, 2010, 17 (03) :197-210
[3]   Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel [J].
Ahmed, Rehan ;
Temko, Andriy ;
Marnane, William P. ;
Boylan, Geraldine ;
Lightbody, Gordon .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 82 :100-110
[4]   Grading hypoxic-ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine [J].
Ahmed, Rehan ;
Temko, Andriy ;
Marnane, William ;
Lightbody, Gordon ;
Boylan, Geraldine .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) :297-309
[5]   Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor [J].
Ansari, A. H. ;
Cherian, P. J. ;
Dereymaeker, A. ;
Matic, V. ;
Jansen, K. ;
De Wispelaere, L. ;
Dielman, C. ;
Vervisch, J. ;
Swarte, R. M. ;
Govaert, P. ;
Naulaers, G. ;
De Vos, M. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (09) :3014-3024
[6]   Neonatal Seizure Detection Using Deep Convolutional Neural Networks [J].
Ansari, Amir H. ;
Cherian, Perumpillichira J. ;
Caicedo, Alexander ;
Naulaers, Gunnar ;
De Vos, Maarten ;
Van Huffel, Sabine .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (04)
[7]   Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection [J].
Bogaarts, J. G. ;
Gommer, E. D. ;
Hilkman, D. M. W. ;
van Kranen-Mastenbroek, V. H. J. M. ;
Reulen, J. P. H. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (08) :1285-1293
[8]   Electrographic Seizures in Preterm Neonates in the Neonatal Intensive Care Unit [J].
Buraniqi, Ersida ;
Sansevere, Arnold J. ;
Kapur, Kush ;
Bergin, Ann M. ;
Pearl, Phillip L. ;
Loddenkemper, Tobias .
JOURNAL OF CHILD NEUROLOGY, 2017, 32 (10) :880-885
[9]   THE EXACT ICTAL AND INTERICTAL DURATION OF ELECTROENCEPHALOGRAPHIC NEONATAL SEIZURES [J].
CLANCY, RR ;
LEGIDO, A .
EPILEPSIA, 1987, 28 (05) :537-541
[10]   Automated neonatal seizure detection mimicking a human observer reading EEG [J].
Deburchgraeve, W. ;
Cherian, P. J. ;
De Vos, M. ;
Swarte, R. M. ;
Blok, J. H. ;
Visser, G. H. ;
Govaert, P. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (11) :2447-2454