Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models

被引:24
|
作者
Ebrahimian, Hossein [1 ]
Jalayer, Fatemeh [1 ]
机构
[1] Univ Naples Federico II, Dept Struct Engn & Architecture, Via Claudio 21, I-80125 Naples, Italy
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
STRUCTURAL MODELS; ETAS MODEL; EARTHQUAKE; STATE; LAW;
D O I
10.1038/s41598-017-09962-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the model parameters, conditioned on the available catalogue of events occurred before the forecasting interval, but also the uncertainty in the sequence of events that are going to happen during the forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after each of the three main events within the sequence, which can predict the seismicity within plus/minus two standard deviations from the mean estimate within the few hours elapsed after the main event.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Analysis of tornado counts with hierarchical Bayesian spatio-temporal models
    Anderson, CJ
    Wikle, CK
    21ST CONFERENCE ON SEVERE LOCAL STORMS, 2002, : 459 - 460
  • [32] Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage
    Yang, Dazhi
    Dong, Zibo
    Reindl, Thomas
    Jirutitijaroen, Panida
    Walsh, Wilfred M.
    SOLAR ENERGY, 2014, 103 : 550 - 562
  • [33] Robust estimation of a dynamic spatio-temporal model with structural change
    Villejo, Stephen Jun V.
    Barrios, Erniel B.
    Lansangan, Joseph Ryan G.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 505 - 518
  • [34] Variable Selection Мethod based on Spatio-temporal Group Lasso and Нierarchical Bayesian Spatio-temporal Мodel
    Wang L.
    Kang Z.
    Journal of Geo-Information Science, 2023, 25 (07) : 1312 - 1324
  • [35] Efficient parameter estimation for spatio-temporal models of pattern formation:: case study of Drosophila melanogaster
    Fomekong-Nanfack, Yves
    Kaandorp, Jaap A.
    Blom, Joke
    BIOINFORMATICS, 2007, 23 (24) : 3356 - 3363
  • [36] Robust Kronecker Product PCA for Spatio-Temporal Covariance Estimation
    Greenewald, Kristjan
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) : 6368 - 6378
  • [37] Practical parameter identifiability for spatio-temporal models of cell invasion
    Simpson, Matthew J.
    Baker, Ruth E.
    Vittadello, Sean T.
    Maclaren, Oliver J.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (164)
  • [38] Spatio-temporal disease risk estimation using clustering-based adjacency modelling
    Yin, Xueqing
    Napier, Gary
    Anderson, Craig
    Lee, Duncan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (06) : 1184 - 1203
  • [39] Motion estimation based on spatio-temporal correlations
    Yoon, HS
    Lee, GS
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 359 - 362
  • [40] Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA
    Sani, Asrul
    Abapihi, Bahriddin
    Mukhsar
    Tosepu, Ramadhan
    Usman, Ida
    Rahman, Gusti Arviani
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (06): : 939 - 951