Monte Carlo simulation of microstructure evolution in biphasic-systems

被引:7
|
作者
Bellucci, Devis [1 ]
Cannillo, Valeria [1 ]
Sola, Antonella [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Ingn Mat & Ambiente, I-41100 Modena, Italy
关键词
Grain growth; Grain boundaries; Grain size; Monte Carlo simulations; ABNORMAL GRAIN-GROWTH; COMPUTER-SIMULATION; POTTS-MODEL; RECRYSTALLIZATION; NUCLEATION; DIMENSIONS; KINETICS; LATTICE;
D O I
10.1016/j.ceramint.2010.05.006
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Over the past few decades, a variety of models have been proposed in order to investigate the grain growth kinetics and the development of crystallographic textures in polycrystalline materials. In particular, a full understanding of the microstructure evolution is a key issue for ceramic systems, since their mechanical or thermal behaviour is intimately related to their microstructure. Moreover, the development of appropriate simulative tools is crucial to reproduce, control and finally optimize the solid-state sintering process of ceramics. Monte Carlo simulations are particularly attractive because of their ability to reproduce the statistical behaviour of atoms and grain boundaries with time. However, Monte Carlo simulations applied to two-phase materials, such as many ceramic systems, result complex because both grain growth and diffusion processes should be taken into account. Here the Monte Carlo Potts model, which is widely used to investigate the crystallization kinetics for monophasic systems, is modified and extended to biphasic ones. The proposed model maps the microstructure onto a discrete lattice. Each lattice element contains a number representing its phase and its crystallographic orientation. The grain formation and growth are simulated by appropriate switching and reorientation attempts involving the lattice elements. The effect of temperature is also discussed. (C) 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:1983 / 1988
页数:6
相关论文
共 50 条
  • [41] Monte Carlo simulation of grain growth in polycrystalline materials
    Huang, CM
    Joanne, CL
    Patnaik, BSV
    Jayaganthan, R
    APPLIED SURFACE SCIENCE, 2006, 252 (11) : 3997 - 4002
  • [42] MONTE-CARLO SIMULATION OF GRAIN-GROWTH
    SAITO, Y
    ENOMOTO, M
    ISIJ INTERNATIONAL, 1992, 32 (03) : 267 - 274
  • [43] Phase field simulation for the evolution of textured ceramics microstructure
    Liu, Liangliang
    Gao, Feng
    Hu, Guoxin
    Liu, Jiangnan
    CERAMICS INTERNATIONAL, 2012, 38 (07) : 5425 - 5432
  • [44] Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation
    Popov, V. V.
    Gorbachev, I. I.
    Pasynkov, A. Yu.
    PHILOSOPHICAL MAGAZINE, 2016, 96 (35) : 3632 - 3653
  • [45] Study on topological properties in two-dimensional grain networks via large-scale Monte Carlo simulation
    Meng, Li
    Wang, Hao
    Liu, Guoquan
    Chen, Ying
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 103 : 165 - 169
  • [46] A multiscale coupled Monte Carlo model to characterize microstructure evolution during hot rolling of Mo-TRIP steel
    Hore, S.
    Das, S. K.
    Banerjee, S.
    Mukherjee, S.
    ACTA MATERIALIA, 2013, 61 (19) : 7251 - 7259
  • [47] Kinetic Monte Carlo simulations of structural evolution during anneal of additively manufactured materials
    Zhou, Xiao Wang
    Karnesky, Richard A.
    Yang, Nancy
    Yee, Joshua K.
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 179 (179)
  • [48] Monte Carlo simulation of osmotic equilibria
    Schreiber, Sebastian
    Hentschke, Reinhard
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (13)
  • [49] Monte Carlo simulation of block copolymers
    Binder, K
    Müller, M
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2000, 5 (5-6) : 315 - 323
  • [50] The Monte Carlo simulation of the Borexino detector
    Agostini, M.
    Altenmueller, K.
    Appel, S.
    Atroshchenko, V.
    Bagdasarian, Z.
    Basilico, D.
    Bellini, G.
    Benziger, J.
    Bick, D.
    Bonfini, G.
    Borodikhina, L.
    Bravo, D.
    Caccianiga, B.
    Calaprice, F.
    Caminata, A.
    Canepa, M.
    Caprioli, S.
    Carlini, M.
    Cavalcante, P.
    Chepurnov, A.
    Choi, K.
    D'Angelo, D.
    Davini, S.
    Derbin, A.
    Ding, X. F.
    Di Noto, L.
    Drachnev, I.
    Fomenko, K.
    Formozov, A.
    Franco, D.
    Froborg, F.
    Gabriele, F.
    Galbiati, C.
    Ghiano, C.
    Giammarchi, M.
    Goeger-Neff, M.
    Goretti, A.
    Gromov, M.
    Hagner, C.
    Houdy, T.
    Hungerford, E.
    Ianni, Aldo
    Ianni, Andrea
    Jany, A.
    Jeschke, D.
    Kobychev, V.
    Korablev, D.
    Korga, G.
    Kryn, D.
    Laubenstein, M.
    ASTROPARTICLE PHYSICS, 2018, 97 : 136 - 159