Quantum Hopfield neural network

被引:120
作者
Rebentrost, Patrick [1 ]
Bromley, Thomas R. [1 ]
Weedbrook, Christian [1 ]
Lloyd, Seth [2 ]
机构
[1] Xanadu, 372 Richmond St West, Toronto, ON M5V 1X6, Canada
[2] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
ALGORITHMS;
D O I
10.1103/PhysRevA.98.042308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum computing allows for the potential of significant advancements in both the speed and the capacity of widely used machine learning techniques. Here we employ quantum algorithms for the Hopfield network, which can be used for pattern recognition, reconstruction, and optimization as a realization of a content-addressable memory system. We show that an exponentially large network can be stored in a polynomial number of quantum bits by encoding the network into the amplitudes of quantum states. By introducing a classical technique for operating the Hopfield network, we can leverage quantum algorithms to obtain a quantum computational complexity that is logarithmic in the dimension of the data. We also present an application of our method as a genetic sequence recognizer.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Quantum Hopfield Network Using Single-Electron Circuits—A Novel Hopfield Network Free from the Local-Minimum Difficulty [J].
Masamichi Akazawa ;
Eriko Tokuda ;
Noburu Asahi ;
Yoshihito Amemiya .
Analog Integrated Circuits and Signal Processing, 2000, 24 (1) :51-57
[2]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[3]  
[Anonymous], ARXIVQUANTPH0107012
[4]  
[Anonymous], 2017, P ROY SOC A-MATH PHY
[5]   Simulations of quantum neural networks [J].
Behrman, EC ;
Nash, LR ;
Steck, JE ;
Chandrashekar, VG ;
Skinner, SR .
INFORMATION SCIENCES, 2000, 128 (3-4) :257-269
[6]  
Behrman EC, 2006, FRONT COLLECT, P351, DOI 10.1007/3-540-36723-3_10
[7]   Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices [J].
Benedetti, Marcello ;
Realpe-Gomez, John ;
Perdomo-Ortiz, Alejandro .
QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03)
[8]   Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning [J].
Benedetti, Marcello ;
Realpe-Gomez, John ;
Biswas, Rupak ;
Perdomo-Ortiz, Alejandro .
PHYSICAL REVIEW A, 2016, 94 (02)
[9]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[10]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371