DIOPHANTINE SETS OF POLYNOMIALS OVER NUMBER FIELDS

被引:4
作者
Demeyer, Jeroen [1 ]
机构
[1] Univ Ghent, Dept Math, B-9000 Ghent, Belgium
关键词
Diophantine set; recursively enumerable set; Hilbert's tenth problem; RECURSIVELY-ENUMERABLE SETS; HILBERTS 10TH PROBLEM; P-ADIC FIELDS; FINITE-FIELD; RINGS;
D O I
10.1090/S0002-9939-10-10329-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a number field or a recursive subring of a number field and consider the polynomial ring R[T]. We show that the set of polynomials with integer coefficients is diophantine over R[7]. Applying a result by Denef, this implies that every recursively enumerable subset of R[T](k) is diophantine over R[T].
引用
收藏
页码:2715 / 2728
页数:14
相关论文
共 19 条