Open problems and questions about geodesics

被引:20
作者
Burns, Keith [1 ]
Matveev, Vladimir S. [2 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Friedrich Schiller Univ Jena, Inst Math, D-07743 Jena, Germany
关键词
geodesics; closed geodesic; entropy; integrable geodesic flows; projectively equivalent metrics; POSITIVE TOPOLOGICAL-ENTROPY; MARKED LENGTH-SPECTRUM; CLOSED GEODESICS; BOUNDARY RIGIDITY; LORENTZIAN MANIFOLDS; POLYNOMIAL INTEGRALS; RIEMANNIAN MANIFOLD; OBATA CONJECTURE; CONJUGATE-POINTS; MINIMAL ENTROPY;
D O I
10.1017/etds.2019.73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper surveys open problems and questions related to geodesics defined by Riemannian, Finsler, semi-Riemannian and magnetic structures on manifolds. It is an extended report on problem sessions held during the International Workshop on Geodesics in August 2010 at the Chern Institute of Mathematics in Tianjin.
引用
收藏
页码:641 / 684
页数:44
相关论文
共 214 条
[81]  
Contreras-Barandiarán G, 2002, J DIFFER GEOM, V61, P1, DOI 10.4310/jdg/1090351319
[82]   THE MARKED LENGTH SPECTRUM OF A PROJECTIVE MANIFOLD OR ORBIFOLD [J].
Cooper, Daryl ;
Delp, Kelly .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) :3361-3376
[83]   THE MARKED LENGTH-SPECTRUM OF A SURFACE OF NONPOSITIVE CURVATURE [J].
CROKE, C ;
FATHI, A ;
FELDMAN, J .
TOPOLOGY, 1992, 31 (04) :847-855
[84]   RIGIDITY FOR SURFACES OF NONPOSITIVE CURVATURE [J].
CROKE, CB .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (01) :150-169
[85]   Local boundary rigidity of a compact Riemannian manifold with curvature bounded above [J].
Croke, CB ;
Dairbekov, NS ;
Sharafutdinov, VA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :3937-3956
[86]  
CROKE CB, 1994, J DIFFER GEOM, V39, P659, DOI 10.4310/jdg/1214455076
[87]  
CROKE CB, 1988, J DIFFER GEOM, V27, P1, DOI 10.4310/jdg/1214441646
[88]   THE FUNDAMENTAL GROUP OF COMPACT MANIFOLDS WITHOUT CONJUGATE-POINTS [J].
CROKE, CB ;
SCHROEDER, V .
COMMENTARII MATHEMATICI HELVETICI, 1986, 61 (01) :161-175
[89]   Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space [J].
Denisova, N. V. ;
Kozlov, V. V. ;
Treschev, D. V. .
IZVESTIYA MATHEMATICS, 2012, 76 (05) :907-921
[90]   Finite horizon Riemann structures and ergodicity [J].
Donnay, VJ ;
Pugh, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :89-106