Multiple and sign-changing solutions for the multivalued p-Laplacian equation

被引:9
作者
Carl, Siegfried [1 ]
Motreanu, Dumitru [2 ]
机构
[1] Univ Halle Wittenberg, Inst Math, D-06099 Halle, Germany
[2] Univ Perpignan, Dept Math, F-66860 Perpignan, France
关键词
Sign-changing solution; p-Laplacian; elliptic inclusions; Clarke's generalized gradient; nonsmooth critical point theory; comparison principles; Fucik spectrum; INCLUSIONS; PRINCIPLE;
D O I
10.1002/mana.200710049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of elliptic inclusions under Dirichlet boundary conditions involving multifunctions of Clarke's generalized gradient. Under conditions given in terms of the rst eigenvalue as well as the Fucik spectrum of the p-Laplacian we prove the existence of a positive, a negative and a sign-changing solution. Our approach is based on variational methods for nonsmooth functionals (nonsmooth critical point theory, second deformation lemma), and comparison principles for multivalued elliptic problems. In particular, the existence of extremal constant-sign solutions plays a key role in the proof of sign-changing solutions. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:965 / 981
页数:17
相关论文
共 50 条
[41]   Periodic solutions for p-Laplacian neutral Lienard equation with a sign-variable coefficient [J].
Gao, Fabao ;
Lu, Shiping ;
Zhang, Wei .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (01) :57-64
[42]   A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential [J].
Cabada, Alberto ;
Cid, Jose Angel ;
Tvrdy, Milan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) :3436-3446
[43]   Multiple sign-changing solutions of an elliptic eigenvalue problem [J].
Qian, AX ;
Li, SJ .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (04) :737-746
[44]   MULTIPLE SIGN-CHANGING SOLUTIONS FOR KIRCHHOFF TYPE PROBLEMS [J].
Batkam, Cyril Joel .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[45]   Infinitely many sign-changing solutions of a critical fractional equation [J].
Abreu, Emerson ;
Barbosa, Ezequiel ;
Ramirez, Joel Cruz .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) :861-901
[46]   Multiple solutions of a superlinear p-Laplacian equation without AR-condition [J].
Sun, Ming-Zheng .
APPLICABLE ANALYSIS, 2010, 89 (03) :325-336
[47]   Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5747-5772
[48]   Multiplicity of sign-changing solutions for a supercritical nonlinear Schrodinger equation [J].
Nie, Jianjun ;
Li, Quanqing .
APPLIED MATHEMATICS LETTERS, 2020, 109 (109)
[49]   Infinitely many sign-changing solutions of a critical fractional equation [J].
Emerson Abreu ;
Ezequiel Barbosa ;
Joel Cruz Ramirez .
Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 :861-901
[50]   NONDEGENERACY OF NONRADIAL SIGN-CHANGING SOLUTIONS TO THE NONLINEAR SCHRODINGER EQUATION [J].
Ao, Weiwei ;
Musso, Monica ;
Wei, Juncheng .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2019, 147 (01) :1-48