A surfactant-assisted strategy to tailor Li-ion charge transfer interfacial resistance for scalable all-solid-state Li batteries

被引:52
作者
Zhou, Chengtian [1 ]
Samson, Alfred Junio [1 ]
Hofstetter, Kyle [1 ]
Thangadurai, Venkataraman [1 ]
机构
[1] Univ Calgary, Dept Chem, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LITHIUM-SULFUR BATTERIES; RECHARGEABLE BATTERIES; ENERGY-STORAGE; ELECTROLYTE; LI7LA3ZR2O12; CHALLENGES; CONDUCTIVITY; ANODES;
D O I
10.1039/c8se00234g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state batteries with Li anode present a promising design to achieve high energy density and safe batteries that meet today's growing demands for portable electronics, electric vehicles, and grid-scale energy storage. Garnet-type solid Li-ion electrolytes exhibit desired physical and chemical properties, including high total (bulk + grain-boundary) Li-ion conductivity, chemical stability with elemental Li, and high electrochemical stability window (6 V vs. Li+/Li), which make them a unique candidate membrane for all-solid-state batteries. A significant challenge with all-solid-state batteries is the high area specific resistance (ASR) in the solid electrolyte/Li anode interface. Although a substantial reduction in interfacial ASR has been achieved recently with Li-stuffed garnets and Li anode, the equipment and techniques used present massive challenges in both cost-effectiveness and scalability. Here, we show a surfactant-assisted wet chemical method to deposit a ZnO layer on Li-stuffed Li6.5La2.9Ba0.1Zr1.4Ta0.6O12 (LLBZT) that increases the contact area between Li/LLBZT and reduces interfacial ASR from 70 to 10 cm(2) at room temperature. Microstructural analysis reveals the uniform distribution of nano ZnO, which causes an excellent Li wetting on the garnet electrolyte and improvement in the contact area between the electrolyte and electrode. Electrochemical characterization and galvanostatic cycling confirm stable Li plating/stripping for more than a hundred cycles at 0.1 mA cm(-2), demonstrating a compelling strategy to solve the Li/solid electrolyte interface problem in all-solid-state Li batteries.
引用
收藏
页码:2165 / 2170
页数:6
相关论文
共 41 条
[1]   Prospects and Limits of Energy Storage in Batteries [J].
Abraham, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (05) :830-844
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[3]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[4]   Commercializing Lithium Sulfur Batteries: Are We Doing the Right Research? [J].
Cleaver, Tom ;
Kovacik, Peter ;
Marinescu, Monica ;
Zhang, Teng ;
Offer, Gregory .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (01) :A6029-A6033
[5]   In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries [J].
Eshetu, Gebrekidan Gebresilassie ;
Grugeon, Sylvie ;
Laruelle, Stephane ;
Boyanov, Simeon ;
Lecocq, Amandine ;
Bertrand, Jean-Pierre ;
Marlair, Guy .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (23) :9145-9155
[6]   Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Hitz, Gregory T. ;
McOwen, Dennis W. ;
Li, Yiju ;
Xu, Shaomao ;
Wen, Yang ;
Zhang, Lei ;
Wang, Chengwei ;
Pastel, Glenn ;
Dai, Jiaqi ;
Liu, Boyang ;
Xie, Hua ;
Yao, Yonggang ;
Wachsman, Eric D. ;
Hu, Liangbing .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (07) :1568-1575
[7]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[8]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[9]   Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium [J].
Hofstetter, Kyle ;
Samson, Alfred Junio ;
Narayanan, Sumaletha ;
Thangadurai, Venkataraman .
JOURNAL OF POWER SOURCES, 2018, 390 :297-312
[10]   Characterization of lithium-rich garnet-type Li6.5La2.5Ba0.5ZrTaO12 for beyond intercalation chemistry-based lithium-ion batteries [J].
Hofstetter, Kyle ;
Samson, Alfred Junio ;
Thangadurai, Venkataraman .
SOLID STATE IONICS, 2018, 318 :71-81