A 3.6-Gb/s point-to-point heterogeneous voltage-capable DRAM interface for capacity-scalable memory subsystems

被引:8
作者
Kennedy, J
Mooney, R
Ellis, R
Jaussi, J
Borkar, S
Choi, JH
Kim, JK
Kim, CK
Kim, WS
Kim, CH
Cho, SI
Loeffler, S
Hoffmann, J
Hokenmaier, W
Houghton, R
Vogelsang, T
机构
[1] Intel Labs, Circuit Res, Hillsboro, OR 97124 USA
[2] Samsung Elect, Hawsung, South Korea
[3] Infineon Technol N Amer, Williston, VT USA
关键词
memory; CMOS; DRAM; simultaneous bidirectional; point-to-point; repeater; capacity scalable;
D O I
10.1109/JSSC.2004.837964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We describe a DRAM interface operating at 3.6 Gb/s/pin implemented in 130-nm CMOS logic and 110-nm DRAM process technologies. It utilizes simultaneous bidirectional (SBD) signaling in a daisy-chained (repeated), point-to-point configuration to enable high performance scalable memory subsystems; and also provides direct attach capability for DRAMs to memory controllers or other logic devices. Source-synchronous strobes are used for data capture, minimizing strobe-to-data jitter. A low-jitter differential clock retimes the data at each DRAM on a per DIMM basis preventing jitter from accumulating in repeated data. The phase of this clock is adjusted on each DRAM to minimize the latency of the repeaters. 80 mW of total power is dissipated per DRAM I/O at 3.6 Gb/s. We present results from a system using both memory controller and DRAM repeater test chips.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 5 条
[1]  
HAYCOCK M, 1997, HOT INT 5 S REC AUG, P149
[2]  
Haycock M, 2001, IEEE INT SOL STAT CI, P62
[3]   A 3.6Gb/s/pin simultaneous bidirectional (SBD) I/O interface for high-speed DRAM [J].
Kim, JK ;
Choi, JH ;
Shin, SW ;
Kim, CK ;
Kim, HY ;
Kim, WS ;
Kim, C ;
Cho, SI .
2004 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, DIGEST OF TECHNICAL PAPERS, 2004, 47 :414-415
[4]   A 900 Mb/s bidirectional signaling scheme [J].
Mooney, R ;
Dike, C ;
Borkar, S .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1995, 30 (12) :1538-1543
[5]  
MOONEY R, 2004, IEEE INT SOLID STATE, P214