Quest for eternal oscillons

被引:1
作者
Mendonca, T. S. [1 ]
de Oliveira, H. P. [1 ,2 ]
机构
[1] Univ Estado Rio de Janeiro, Inst Fis AD Tavares, Dept Fis Teor, R Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, RJ, Brazil
[2] Bowdoin Coll, Dept Phys & Astron, Brunswick, ME 04011 USA
关键词
D O I
10.1103/PhysRevD.105.116028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Nonlinear field theories produce unstable but long-lived configurations known as oscillons. These structures have been studied with asymmetric and symmetric double-well potentials and extended to other forms of potentials. In the present work, we examine the consequences of considering higher-order field theories, where we have used a generalization of the symmetric double-well potential and a 06 potential. Consequently, we have found 3 + 1 spherically symmetric oscillons with significantly large lifetimes without parameter fine-tuning.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Long-lived oscillons from asymmetric bubbles: Existence and stability [J].
Adib, AB ;
Gleiser, M ;
Almeida, CAS .
PHYSICAL REVIEW D, 2002, 66 (08)
[2]   Multidomain Galerkin-collocation method: spherical collapse of scalar fields II [J].
Alcoforado, M. A. ;
Aranha, R. F. ;
Barreto, W. O. ;
de Oliveira, H. P. .
CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (22)
[3]   New numerical framework for the generalized Baumgarte-Shapiro-Shibata-Nakamura formulation: The vacuum case for spherical symmetry [J].
Alcoforado, M. A. ;
Aranha, R. F. ;
Barreto, W. O. ;
de Oliveira, H. P. .
PHYSICAL REVIEW D, 2021, 104 (08)
[4]   FRACTAL STRUCTURE IN THE SCALAR LAMBDA(PHI-2-1)2 THEORY [J].
ANNINOS, P ;
OLIVEIRA, S ;
MATZNER, RA .
PHYSICAL REVIEW D, 1991, 44 (04) :1147-1160
[5]   Scattering of compactlike structures [J].
Bazeia, D. ;
Mendonca, T. S. ;
Menezes, R. ;
de Oliveira, H. P. .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (12)
[6]   From kinks to compactons [J].
Bazeia, D. ;
Losano, L. ;
Marques, M. A. ;
Menezes, R. .
PHYSICS LETTERS B, 2014, 736 :515-521
[7]  
Boyd J.P., 2001, Chebyshev and Fourier spectral methods, Vsecond
[8]   RESONANCE STRUCTURE IN KINK ANTIKINK INTERACTIONS IN PHI-4 THEORY [J].
CAMPBELL, DK ;
SCHONFELD, JF ;
WINGATE, CA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 9 (1-2) :1-32
[9]   A VARIABLE ORDER RUNGE-KUTTA METHOD FOR INITIAL-VALUE PROBLEMS WITH RAPIDLY VARYING RIGHT-HAND SIDES [J].
CASH, JR ;
KARP, AH .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1990, 16 (03) :201-222
[10]   QUANTUM EXPANSION OF SOLITON SOLUTIONS [J].
CHRIST, NH ;
LEE, TD .
PHYSICAL REVIEW D, 1975, 12 (06) :1606-1627