An improved model for the accurate calculation of parallel heat fluxes at the JET bulk tungsten outer divertor

被引:8
作者
Iglesias, D. [1 ,2 ,18 ]
Bunting, P. [1 ,2 ,18 ]
Coenen, J. W. [1 ,3 ,50 ]
Matthews, G. F. [1 ,2 ,18 ]
Pitts, R. A. [1 ,4 ]
Silburn, S. [1 ,2 ,18 ]
Balboa, I. [1 ,2 ,18 ]
Coffey, I. [1 ,2 ,40 ]
Corre, Y. [1 ,5 ,19 ]
Dejarnac, R. [1 ,6 ,61 ]
Gaspar, J. [1 ,7 ]
Gauthier, E. [1 ,5 ,19 ]
Jachmich, S. [1 ,8 ,9 ,46 ,69 ]
Krieger, K. [1 ,10 ,73 ]
Pamela, S. [1 ,2 ,18 ]
Riccardo, V. [1 ,11 ,18 ]
Stamp, M. [1 ,2 ]
Abduallev, S. [50 ]
Abhangi, M. [57 ]
Abreu, P. [64 ]
Afzal, M. [18 ]
Aggarwal, K. M. [40 ]
Ahlgren, T. [112 ]
Ahn, J. H. [19 ]
Aho-Mantila, L. [122 ]
Aiba, N. [80 ]
Airila, M. [122 ]
Albanese, R. [115 ]
Aldred, V. [18 ]
Alegre, D. [104 ]
Alessi, E. [56 ]
Aleynikov, P. [66 ]
Alfier, A. [23 ]
Alkseev, A. [83 ]
Allinson, M. [18 ]
Alper, B. [18 ]
Alves, E. [64 ]
Ambrosino, G. [115 ]
Ambrosino, R. [116 ]
Amicucci, L. [101 ]
Amosov, V. [99 ]
Sunden, E. Andersson [33 ]
Angelone, M. [101 ]
Anghel, M. [96 ]
Angioni, C. [73 ]
Appel, L. [18 ]
Appelbee, C. [18 ]
Arena, P. [41 ]
Ariola, M. [116 ]
Arnichand, H. [19 ]
机构
[1] EUROfus Consortium, JET, CSC, Abingdon OX14 3DB, Oxon, England
[2] UKAEA Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
[3] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany
[4] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[5] CEA, IRFM, St Paul Les Durance, France
[6] Inst Plasma Phys CAS, Prague, Czech Republic
[7] Aix Marseille Univ, IUSTI UMR CNRS 7343, Marseille, France
[8] EUROfus PMU, JET, Culham Sci Ctr, Abingdon, Oxon, England
[9] Ecole Royale Mil, Koninklijke Mil Sch, LPP, TEC Partner, Brussels, Belgium
[10] Max Planck Inst Plasma Phys, Garching, Germany
[11] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[12] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[13] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[14] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[15] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[16] Arizona State Univ, Tempe, AZ USA
[17] Barcelona Supercomp Ctr, Barcelona, Spain
[18] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[19] CEA, IRFM, F-13108 St Paul Les Durance, France
[20] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[21] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[22] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[23] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[24] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[25] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[26] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[27] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[28] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[29] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[30] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[31] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[32] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[33] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[34] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[35] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[36] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[37] Univ Basel, Dept Phys, Basel, Switzerland
[38] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[39] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[40] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[41] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[42] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[43] Dublin City Univ, Dublin, Ireland
[44] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[45] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[46] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[47] European Commiss, B-1049 Brussels, Belgium
[48] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[49] FOM Inst DIFFER, Eindhoven, Netherlands
[50] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
关键词
JET; divertor; parallel heat flux; optical projection; ITER-like wall; ASDEX-UPGRADE; POWER;
D O I
10.1088/1741-4326/aad83e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Parallel heat flux calculations at the JET divertor have been based on the assumption that all incoming heat is due to the projection of the heat flux parallel to the magnetic line, q, plus a constant background. This simplification led to inconsistencies during the analysis of a series of dedicated tungsten melting experiments performed in 2013, for which infrared (IR) thermography surface measurements could not be recreated through simulations unless the parallel heat flux was reduced by 80% for L-mode and 60% for H-mode. We give an explanation for these differences using a new IR inverse analysis code, a set of geometrical corrections, and most importantly an additional term for the divertor heat flux accounting for non-parallel effects such as cross-field transport, recycled neutrals or charge exchange. This component has been evaluated comparing four different geometries with impinging angles varying from 2 to 90 degrees. Its magnitude corresponds to 1.2%-1.9% of q(parallel to), but because it is not affected by the magnetic projection, it accounts for up to 20%-30% of the tile surface heat flux. The geometrical corrections imply a further reduction of 24% of the measured heat flux. In addition, the application of the new inverse code increases the accuracy of the tile heat flux calculation, eliminating any previous discrepancy. The parallel heat flux computed with this new model is actually much lower than previously deduced by inverse analysis of IR temperatures-40% for L-mode and 50% for H-mode-while being independent of the geometry on which it is measured. This main result confirms the validity of the optical projection as long as a non-constant and non-parallel component is considered. For a given total heating power, the model predicts over 10% reduction of the maximum tile surface heat flux compared to strict optical modelling, as well as a 30% reduced sensitivity to manufacturing and assembling tolerances. These conclusions, along with the improvement in the predictability of the divertor thermal behaviour, are critical for JET future DT operations, and are also directly applicable to the design of the ITER divertor monoblocks.
引用
收藏
页数:17
相关论文
共 32 条
[1]  
ANSYS&REG
[2]  
Academic Research, REL 16 2 HELP SYST T
[3]   Thermal analysis of an exposed tungsten edge in the JET divertor [J].
Arnoux, G. ;
Loenen, J. ;
Bazylev, B. ;
Corre, Y. ;
Matthews, G. F. ;
Balboa, I. ;
Clever, M. ;
Dejarnac, R. ;
Devaux, S. ;
Eich, T. ;
Gauthier, E. ;
Frassinetti, L. ;
Horacek, J. ;
Jachmich, S. ;
Kinna, D. ;
Marsen, S. ;
Mertens, Ph. ;
Pitts, R. A. ;
Rack, M. ;
Sergienko, G. ;
Sieglin, B. ;
Stamp, M. ;
Thompson, V. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :415-419
[4]   Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor [J].
Balboa, I. ;
Arnoux, G. ;
Eich, T. ;
Sieglin, B. ;
Devaux, S. ;
Zeidner, W. ;
Morlock, C. ;
Kruezi, U. ;
Sergienko, G. ;
Kinna, D. ;
Thomas, P. D. ;
Rack, M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
[5]   Transient induced tungsten melting at the Joint European Torus (JET) [J].
Coenen, J. W. ;
Matthews, G. F. ;
Krieger, K. ;
Iglesias, D. ;
Bunting, P. ;
Corre, Y. ;
Silburn, S. ;
Balboa, I. ;
Bazylevs, B. ;
Conway, N. ;
Coffey, I. ;
Dejarnac, R. ;
Gauthier, E. ;
Gaspar, J. ;
Jachmich, S. ;
Jepu, I. ;
Makepeace, C. ;
Scannell, R. ;
Stamp, M. ;
Peterssonm, P. ;
Pitts, R. A. ;
Wiesen, S. ;
Widdowson, A. ;
Heinola, K. ;
Baron-Wiechec, A. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson .
PHYSICA SCRIPTA, 2017, T170
[6]   ELM-induced transient tungsten melting in the JET divertor [J].
Coenen, J. W. ;
Arnoux, G. ;
Bazylev, B. ;
Matthews, G. F. ;
Autricque, A. ;
Balboa, I. ;
Clever, M. ;
Dejarnac, R. ;
Coffey, I. ;
Corre, Y. ;
Devaux, S. ;
Frassinetti, L. ;
Gauthier, E. ;
Horacek, J. ;
Jachmich, S. ;
Komm, M. ;
Knaup, M. ;
Krieger, K. ;
Marsen, S. ;
Meigs, A. ;
Mertens, Ph. ;
Pitts, R. A. ;
Puetterich, T. ;
Rack, M. ;
Stamp, M. ;
Sergienko, G. ;
Tamain, P. ;
Thompson, V. .
NUCLEAR FUSION, 2015, 55 (02)
[7]   Heat flux decay length during RF power operation in the Tore Supra tokamak [J].
Corre, Y. ;
Gunn, J. P. ;
Firdaouss, M. ;
Carpentier, S. ;
Chantant, M. ;
Colas, L. ;
Ekedahl, A. ;
Gardarein, J. -L. ;
Lipa, M. ;
Loarer, T. ;
Courtois, X. ;
Guilhem, D. ;
St-Laurent, F. .
NUCLEAR FUSION, 2014, 54 (01)
[8]  
Corre Y, 2017, NUCL FUSION, V023010, P55
[9]  
Dassault Systemes Simulia Corp, 2013, AB 6 13
[10]   Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS [J].
Dejarnac, R. ;
Corre, Y. ;
Vondracek, P. ;
Gaspar, J. ;
Gauthier, E. ;
Gunn, J. P. ;
Komm, M. ;
Gardarein, J. -L. ;
Horacek, J. ;
Hron, M. ;
Matejicek, J. ;
Pitts, R. A. ;
Panek, R. .
NUCLEAR FUSION, 2018, 58 (06)