Ultra-Wideband Free-Space Optical Phase Stabilization

被引:9
作者
Dix-Matthews, Benjamin P. [1 ,2 ]
Gozzard, David R. [1 ,2 ]
Karpathakis, Skevos F. E. [1 ]
Gravestock, Charles T. [1 ]
Schediwy, Sascha W. [1 ,2 ]
机构
[1] Univ Western Australia, Int Ctr Radio Astron Res, Perth, WA 6009, Australia
[2] Univ Western Australia, Ctr Excellence Engn Quantum Syst, Australian Res Council, Perth, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Optical noise; Adaptive optics; Optical feedback; Phase noise; Optical variables measurement; Optical mixing; Atmospheric measurements; Free-space optics; optical communications; phase stabilization; atmospheric propagation; wavelength division multiplexing;
D O I
10.1109/LCOMM.2021.3053943
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Free-space optical (FSO) communications have the potential to revolutionize wireless communications due to the advantages of greater inherent security, high-directionality, high available bandwidth and small physical footprint. The effects of atmospheric turbulence currently limit the performance of FSO communications. In this letter, we demonstrate a system capable of indiscriminately suppressing the atmospheric phase noise encountered by independent optical signals spread over a range of 7.2 THz (encompassing the full optical C-Band), by actively phase stabilizing a primary optical signal at 193.1 THz (1553 nm). We show similar to 30 dB of indiscriminate phase stabilization over the full range, down to average phase noise at 10 Hz of -39.6 dBc Hz(-1) when using an acousto-optic modulator (AOM) as a Doppler actuator, and -39.9 dBc Hz(-1) when using a fiber-stretcher as group-delay actuator to provide the phase-stabilization system's feedback. We demonstrate that this suppression is limited by the noise of the independent optical signals, and that the expected achievable suppression is over 40 dB greater, reaching around -90 dB Hz(-1) at 10 Hz. We conclude that 40 Tbps ground-to-space FSO transmission would be made possible with the combination of our stabilization system and other demonstrated technologies.
引用
收藏
页码:1610 / 1614
页数:5
相关论文
共 29 条
[1]  
[Anonymous], Koheras BASIK Ultra-low Phase Noise OEM Fiber Laser
[2]  
[Anonymous], Tunable Diode Lasers
[3]  
Bonnefois A. M, 2019, P SPIE, V11180, P889
[4]  
Calvo RM, 2019, C FREE SPACE LASER C, V10910, DOI [10.1117/12.2513819, DOI 10.1117/12.2513819]
[5]   Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation [J].
Chen, Shijun ;
Sun, Fuyu ;
Bai, Qingsong ;
Chen, Dawei ;
Chen, Qiang ;
Hou, Dong .
OPTICS COMMUNICATIONS, 2017, 401 :18-22
[6]   Tree Structures and Algorithms for Physical Design [J].
Cheng, Chung-Kuan ;
Graham, Ronald ;
Kang, Ilgweon ;
Park, Dongwon ;
Wang, Xinyuan .
PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN (ISPD'18), 2018, :120-125
[7]   Ultra-dense optical data transmission over standard fibre with a single chip source [J].
Corcoran, Bill ;
Tan, Mengxi ;
Xu, Xingyuan ;
Boes, Andreas ;
Wu, Jiayang ;
Nguyen, Thach G. ;
Chu, Sai T. ;
Little, Brent E. ;
Morandotti, Roberto ;
Mitchell, Arnan ;
Moss, David J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Point-to-point stabilized optical frequency transfer with active optics [J].
Dix-Matthews, Benjamin P. ;
Schediwy, Sascha W. ;
Gozzard, David R. ;
Savalle, Etienne ;
Esnault, Francois-Xavier ;
Leveque, Thomas ;
Gravestock, Charles ;
D'Mello, Darlene ;
Karpathakis, Skevos ;
Tobar, Michael ;
Wolf, Peter .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Methods for coherent optical Doppler orbitography [J].
Dix-Matthews, Benjamin P. ;
Schediwy, Sascha W. ;
Gozzard, David R. ;
Driver, Simon ;
Schreiber, Karl Ulrich ;
Carman, Randall ;
Tobar, Michael .
JOURNAL OF GEODESY, 2020, 94 (06)
[10]  
Djerroud K., 2010, EFTF-2010 24th European Frequency and Time Forum, P1