Statistical complexity and disequilibrium

被引:171
作者
Martin, MT
Plastino, A
Rosso, OA
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, RA-1428 Buenos Aires, DF, Argentina
[2] Natl Univ La Plata, La Plata Phys Inst, IFLP, RA-1900 La Plata, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Argentinas Natl Res Council, RA-1900 La Plata, Argentina
关键词
statistical complexity; disequilibrium; distances in probability space; dynamical systems;
D O I
10.1016/S0375-9601(03)00491-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the concept of disequilibrium as an essential ingredient of a family of statistical complexity measures. We find that Wootters' objections to the use of Euclidean distances for probability spaces become quite relevant to this endeavor. Replacing the Euclidean distance by the Wootters' one noticeably improves the behavior of the associated statistical complexity measure, as evidenced by its application to the dynamics of the logistic map. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:126 / 132
页数:7
相关论文
共 22 条
[1]   Some features of the Lopez-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity [J].
Anteneodo, C ;
Plastino, AR .
PHYSICS LETTERS A, 1996, 223 (05) :348-354
[2]   Comment II on "Simple measure for complexity" [J].
Binder, PM ;
Perry, N .
PHYSICAL REVIEW E, 2000, 62 (02) :2998-2999
[3]   Tendency towards maximum complexity in a nonequilibrium isolated system -: art. no. 066116 [J].
Calbet, X ;
López-Ruiz, R .
PHYSICAL REVIEW E, 2001, 63 (06)
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]   Comment I on "Simple measure for complexity" [J].
Crutchfield, JP ;
Feldman, DP ;
Shalizi, CR .
PHYSICAL REVIEW E, 2000, 62 (02) :2996-2997
[6]   INFERRING STATISTICAL COMPLEXITY [J].
CRUTCHFIELD, JP ;
YOUNG, K .
PHYSICAL REVIEW LETTERS, 1989, 63 (02) :105-108
[7]   Measures of statistical complexity: Why? [J].
Feldman, DP ;
Crutchfield, JP .
PHYSICS LETTERS A, 1998, 238 (4-5) :244-252
[8]   TOWARD A QUANTITATIVE THEORY OF SELF-GENERATED COMPLEXITY [J].
GRASSBERGER, P .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (09) :907-938
[9]   COMPLEXITY AND ADAPTATION [J].
HUBERMAN, BA ;
HOGG, T .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 22 (1-3) :376-384
[10]  
Kantz H., 1998, NONLINEAR ANAL PHYSL