On the System of Nonlinear Mixed Implicit Equilibrium Problems in Hilbert Spaces

被引:18
作者
Cho, Yeol Je [2 ,3 ]
Petrot, Narin [1 ]
机构
[1] Naresuan Univ, Dept Math, Fac Sci, Phitsanulok 65000, Thailand
[2] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2010年
关键词
SMOOTH BANACH-SPACES; VARIATIONAL-INEQUALITIES; PROJECTION METHODS; MAPPINGS;
D O I
10.1155/2010/437976
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the Wiener-Hopf equations and the Yosida approximation notions to prove the existence theorem of a system of nonlinear mixed implicit equilibrium problems (SMIE) in Hilbert spaces. The algorithm for finding a solution of the problem (SMIE) is suggested; the convergence criteria and stability of the iterative algorithm are discussed. The results presented in this paper are more general and are viewed as an extension, refinement, and improvement of the previously known results in the literature.
引用
收藏
页数:12
相关论文
共 18 条
[1]   Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces [J].
Agarwal, RP ;
Cho, YJ ;
Li, J ;
Huang, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (02) :435-447
[2]  
Blum E., 1994, Math. Stud., V63, P127
[3]  
Chan Norman, 2007, Future Oncol, V3, P329, DOI 10.2217/14796694.3.3.329
[4]  
Cho YJ, 2004, J KOREAN MATH SOC, V41, P489
[5]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[6]  
HARDER MA, 1988, MATH JPN, V33, P693
[7]   Generalized system for relaxed cocoercive mixed variational inequalities in Hilbert spaces [J].
He, Zhenhua ;
Gu, Feng .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) :26-30
[8]   Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings [J].
Huang, Nan-Jing ;
Lan, Heng-you ;
Cho, Yeol Je .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :608-618
[9]  
Kassis N, 2000, Int J Exp Diabetes Res, V1, P185, DOI 10.1155/EDR.2000.185
[10]   Iterative approximation of a unique solution of a system of variational-like inclusions in real q-uniformly smooth Banach spaces [J].
Kazmi, K. R. ;
Khan, F. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) :917-929