Conversion of biomass waste to multi-heteroatom-doped carbon networks with high surface area and hierarchical porosity for advanced supercapacitors

被引:44
作者
Deng, Peiqin [1 ]
Lei, Shuijin [1 ]
Wang, Wei [1 ]
Zhou, Wei [1 ]
Ou, Xiuling [1 ]
Chen, Lianfu [1 ]
Xiao, Yanhe [1 ]
Cheng, Baochang [1 ]
机构
[1] Nanchang Univ, Sch Mat Sci & Engn, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
MESOPOROUS SILICA NANOPARTICLES; HYDROTHERMAL CARBONIZATION; ENERGY-STORAGE; ELECTROCHEMICAL CAPACITORS; ELECTROLYTE; GRAPHENE;
D O I
10.1007/s10853-018-2630-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon represents one of the most prominent materials for energy applications. It is always desirable to achieve high value-added carbon materials from biomass wastes. Herein, the advanced carbon materials with multi-heteroatom-doping, high surface area and hierarchical porosity are prepared by hydrothermal conversion and post-activation of silkworm excrement, an agricultural waste. Owing to their unique composition and porosity, the carbon networks show a specific capacitance as high as 412 F g(-1) in 6M KOH electrolyte at a current density of 0.5 A g(-1). The symmetric supercapacitor device can deliver a high energy density up to 28.78 Wh kg(-1) at a power density of 300 W kg(-1) with a wide voltage window of 2.0 V in 1M Na2SO4 aqueous electrolyte. It also exhibits superb cycling stability with a capacitance retention of 92.9% for 10000 cycles. This work demonstrates a facile and eco-friendly strategy to transform biomass wastes into superior carbon electrode materials for high-performance supercapacitors.
引用
收藏
页码:14536 / 14547
页数:12
相关论文
共 32 条
[1]   Highly efficient plastic-based quasi-solid-state dye-sensitized solar cells with light-harvesting mesoporous silica nanoparticles gel-electrolyte [J].
Chen, Hsin-Wei ;
Chiang, Ya-Dong ;
Kung, Chung-Wei ;
Sakai, Nobuya ;
Ikegami, Masashi ;
Yamauchi, Yusuke ;
Wu, Kevin C. -W. ;
Miyasaka, Tsutomu ;
Ho, Kuo-Chuan .
JOURNAL OF POWER SOURCES, 2014, 245 :411-417
[2]   A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion [J].
Chi Van Nguyen ;
Liao, Yu-Te ;
Kang, Ting-Cih ;
Chen, Jeffrey E. ;
Yoshikawa, Takuya ;
Nakasaka, Yuta ;
Masuda, Takao ;
Wu, Kevin C. -W. .
GREEN CHEMISTRY, 2016, 18 (22) :5957-5961
[3]   Biomass-derived carbon: synthesis and applications in energy storage and conversion [J].
Deng, Jiang ;
Li, Mingming ;
Wang, Yong .
GREEN CHEMISTRY, 2016, 18 (18) :4824-4854
[4]   Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications - a review [J].
Divyashree, A. ;
Hegde, Gurumurthy .
RSC ADVANCES, 2015, 5 (107) :88339-88352
[5]   3D network of cellulose-based energy storage devices and related emerging applications [J].
Dutta, Saikat ;
Kim, Jeonghun ;
Ide, Yusuke ;
Kim, Jung Ho ;
Hossain, Md. Shahriar A. ;
Bando, Yoshio ;
Yamauchi, Yusuke ;
Wu, Kevin C. -W. .
MATERIALS HORIZONS, 2017, 4 (04) :522-545
[6]   Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications [J].
Dutta, Saikat ;
Bhaumik, Asim ;
Wu, Kevin C. -W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3574-3592
[7]   Hierarchical Nanostructured Carbons with Meso-Macroporosity: Design, Characterization, and Applications [J].
Fang, Baizeng ;
Kim, Jung Ho ;
Kim, Min-Sik ;
Yu, Jong-Sung .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (07) :1397-1406
[8]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[9]   Novel insight into neutral medium as electrolyte for high-voltage supercapacitors [J].
Fic, Krzysztof ;
Lota, Grzegorz ;
Meller, Mikolaj ;
Frackowiak, Elzbieta .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5842-5850
[10]   Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte [J].
Gao, Qiang ;
Demarconnay, Laurent ;
Raymundo-Pinero, Encarnacion ;
Beguin, Francois .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9611-9617