High-Order Compact Finite Difference Method for Black-Scholes PDE

被引:2
作者
Patel, Kuldip Singh [1 ]
Mehra, Mani [1 ]
机构
[1] Indian Inst Technol, Delhi, India
来源
MATHEMATICAL ANALYSIS AND ITS APPLICATIONS | 2015年 / 143卷
关键词
Option pricing; European options; Black-Scholes PDE; Compact finite difference methods; SCHEMES;
D O I
10.1007/978-81-322-2485-3_32
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, Black-Scholes PDE is solved for European option pricing by high-order compact finite difference method using polynomial interpolation. Numerical results obtained are compared with standard finite difference method and error with the analytic solution is discussed.
引用
收藏
页码:393 / 403
页数:11
相关论文
共 50 条
[21]   A numerical study of Asian option with high-order compact finite difference scheme [J].
Patel, Kuldip Singh ;
Mehra, Mani .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) :467-491
[22]   Numerical pricing of options using high-order compact finite difference schemes [J].
Tangman, D. Y. ;
Gopaul, A. ;
Bhuruth, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) :270-280
[23]   Correcting the Bias in the Practitioner Black-Scholes Method [J].
Yin, Yun ;
Moffatt, Peter G. .
JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2019, 12 (04)
[24]   Difference in Option Pricing Between Binomial and Black-Scholes Model [J].
Florianova, Hana ;
Chmelikova, Barbora .
MANAGING AND MODELLING OF FINANCIAL RISKS: 7TH INTERNATIONAL SCIENTIFIC CONFERENCE, PTS I-III, 2014, :198-202
[25]   An Efficient Higher-Order Numerical Scheme for Solving Fractional Black-Scholes PDE Using Analytical Weights [J].
Xiurong Dai ;
Malik Zaka Ullah .
Iranian Journal of Science, 2024, 48 :423-435
[26]   An Efficient Higher-Order Numerical Scheme for Solving Fractional Black-Scholes PDE Using Analytical Weights [J].
Dai, Xiurong ;
Ullah, Malik Zaka .
IRANIAN JOURNAL OF SCIENCE, 2024, 48 (02) :423-435
[27]   High-Order Compact Finite Difference Methods for Solving the High-Dimensional Helmholtz Equations [J].
Wang, Zhi ;
Ge, Yongbin ;
Sun, Hai-Wei .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) :491-516
[28]   Development of a high-order compact finite-difference total Lagrangian method for nonlinear structural dynamic analysis [J].
Parseh, Kaveh ;
Hejranfar, Kazem .
APPLIED MATHEMATICAL MODELLING, 2018, 63 :179-202
[29]   High-order finite difference method for the Schrodinger equation on deforming domains [J].
Rydin, Ylva Ljungberg ;
Mattsson, Ken ;
Werpers, Jonatan ;
Sjoqvist, Erik .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 443
[30]   High-order compact finite difference scheme for option pricing in stochastic volatility models [J].
Duering, Bertram ;
Fournie, Michel .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (17) :4462-4473