High-Order Compact Finite Difference Method for Black-Scholes PDE

被引:2
|
作者
Patel, Kuldip Singh [1 ]
Mehra, Mani [1 ]
机构
[1] Indian Inst Technol, Delhi, India
来源
MATHEMATICAL ANALYSIS AND ITS APPLICATIONS | 2015年 / 143卷
关键词
Option pricing; European options; Black-Scholes PDE; Compact finite difference methods; SCHEMES;
D O I
10.1007/978-81-322-2485-3_32
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, Black-Scholes PDE is solved for European option pricing by high-order compact finite difference method using polynomial interpolation. Numerical results obtained are compared with standard finite difference method and error with the analytic solution is discussed.
引用
收藏
页码:393 / 403
页数:11
相关论文
共 50 条
  • [1] Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation
    Düring, B
    Fournié, M
    Jüngel, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (02): : 359 - 369
  • [2] High order method for Black-Scholes PDE
    Hu, Jinhao
    Gan, Siqing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (07) : 2259 - 2270
  • [3] A NEW FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF BLACK-SCHOLES PDE
    Sargolzaei, P.
    Soleymani, F.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2010, 6 (01): : 49 - 55
  • [4] High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options
    Abdi, N.
    Aminikhah, H.
    Sheikhani, A. H. Refahi
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [5] High-order numerical method for generalized Black-Scholes model
    Rao, S. Chandra Sekhara
    Manisha
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1765 - 1776
  • [6] A high-order compact method for nonlinear Black-Scholes option pricing equations of American options
    Dremkova, E.
    Ehrhardt, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) : 2782 - 2797
  • [7] COMPACT FINITE DIFFERENCE SCHEMES OF THE TIME FRACTIONAL BLACK-SCHOLES MODEL
    Tian, Zhaowei
    Zhai, Shuying
    Weng, Zhifeng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 904 - 919
  • [8] High-order compact scheme for solving nonlinear Black-Scholes equation with transaction cost
    Liao, Wenyuan
    Khaliq, Abdul Q. M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (06) : 1009 - 1023
  • [9] A weighted finite difference method for subdiffusive Black-Scholes model
    Krzyzanowski, Grzegorz
    Magdziarz, Marcin
    Plociniczak, Lukasz
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 653 - 670
  • [10] Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation
    Gu, Jie
    Nong, Lijuan
    Yi, Qian
    Chen, An
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (04) : 1692 - 1712