Gap theorems for Ricci-harmonic solitons

被引:12
作者
Tadano, Homare [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
关键词
Ricci-harmonic flow; Ricci-harmonic soliton; Harmonic-Einstein; Gap theorem; MAP FLOW;
D O I
10.1007/s10455-015-9485-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using estimates for the generalized Ricci curvature, we shall give some gap theorems for Ricci-harmonic solitons with compact domain manifolds by showing some necessary and sufficient conditions for the solitons to be harmonic-Einstein. Our results may be regarded as generalizations of recent works by H. Li, and M. Fernandez-Lpez and E. Garcia-Rio.
引用
收藏
页码:165 / 175
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2003, RICCI FLOW SURGERY 3
[2]  
[Anonymous], 2003, ARXIVMATH0307245
[3]  
[Anonymous], ARXIVMATH0211159
[4]  
[Anonymous], 2006, Grad. Stud. Math
[5]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[6]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[7]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[8]  
Eells J., 1978, Bull. London Math. Soc., V10, P1, DOI DOI 10.1112/BLMS/10.1.1
[9]   SOME GAP THEOREMS FOR GRADIENT RICCI SOLITONS [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
[10]   Harnack estimates for geometric flows, applications to Ricci flow coupled with harmonic map flow [J].
Guo, Hongxin ;
He, Tongtong .
GEOMETRIAE DEDICATA, 2014, 169 (01) :411-418