Developments in deep learning based corrections of cone beam computed tomography to enable dose calculations for adaptive radiotherapy

被引:14
作者
Taasti, Vicki Trier [1 ]
Klages, Peter [2 ]
Parodi, Katia [3 ]
Muren, Ludvig Paul [4 ]
机构
[1] Maastricht Univ, Med Ctr, GROW Sch Oncol, Dept Radiat Oncol Maastro, Maastricht, Netherlands
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
[3] Ludwig Maximilians Univ Munchen, Dept Med Phys Expt Phys, Munich, Germany
[4] Aarhus Univ, Aarhus Univ Hosp, Danish Ctr Particle Therapy, Dept Med Phys Oncol, Aarhus, Denmark
来源
PHYSICS & IMAGING IN RADIATION ONCOLOGY | 2020年 / 15卷
关键词
PROTON THERAPY; CT; LUNG; HEAD; CBCT; NECK; REGISTRATION; FEASIBILITY; IMAGES; MOTION;
D O I
10.1016/j.phro.2020.07.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:77 / 79
页数:3
相关论文
共 31 条
  • [1] Ahmad MA, 2018, ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, P559, DOI [10.1145/3233547.3233667, 10.1109/ICHI.2018.00095]
  • [2] Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting
    Bootsma, G. J.
    Verhaegen, F.
    Jaffray, D. A.
    [J]. MEDICAL PHYSICS, 2015, 42 (01) : 54 - 68
  • [3] On-line dose-guidance to account for inter-fractional motion during proton therapy
    Busch, Kia
    Muren, Ludvig P.
    Thornqvist, Sara
    Andersen, Andreas G.
    Pedersen, Jesper
    Dong, Lei
    Petersen, Jorgen B. B.
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2019, 9 : 7 - 13
  • [4] A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning
    Chen, Xinyuan
    Men, Kuo
    Li, Yexiong
    Yi, Junlin
    Dai, Jianrong
    [J]. MEDICAL PHYSICS, 2019, 46 (01) : 56 - 64
  • [5] 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture
    Dan Nguyen
    Jia, Xun
    Sher, David
    Lin, Mu-Han
    Iqbal, Zohaib
    Liu, Hui
    Jiang, Steve
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (06)
  • [6] ScatterNet: A convolutional neural network for cone-beam CT intensity correction
    Hansen, David C.
    Landry, Guillaume
    Kamp, Florian
    Li, Minglun
    Belka, Claus
    Parodi, Katia
    Kurz, Christopher
    [J]. MEDICAL PHYSICS, 2018, 45 (11) : 4916 - 4926
  • [7] Cardio-pulmonary substructure segmentation of radiotherapy computed tomography images using convolutional neural networks for clinical outcomes analysis
    Haq, Rabia
    Hotca, Alexandra
    Apte, Aditya
    Rimner, Andreas
    Deasy, Joseph O.
    Thor, Maria
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 14 : 61 - 66
  • [8] Cone beam computed tomography-based monitoring and management of target and organ motion during external beam radiotherapy in cervical cancer
    Jensen, Nina Boje Kibsgaard
    Assenholt, Marianne Sanggaard
    Fokdal, Lars Ulrik
    Vestergaard, Anne
    Schouboe, Annette
    Kjaersgaard, Eva Bruun
    Boejen, Annette
    Nyvang, Lars
    Lindegaard, Jacob Christian
    Tanderup, Kari
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2019, 9 : 14 - 20
  • [9] Clinical implementation of AI technologies will require interpretable AI models
    Jia, Xun
    Ren, Lei
    Cai, Jing
    [J]. MEDICAL PHYSICS, 2020, 47 (01) : 1 - 4
  • [10] Cone beam CT based dose calculation in the thorax region
    Kaplan, Laura Patricia
    Elstrom, Ulrik Vindelev
    Moller, Ditte Sloth
    Hoffmann, Lone
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2018, 7 : 45 - 50