Families of classical subgroup separable superintegrable systems

被引:36
作者
Kalnins, E. G. [1 ]
Kress, J. M. [2 ]
Miller, W., Jr. [3 ]
机构
[1] Univ Waikato, Dept Math, Hamilton, New Zealand
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
D O I
10.1088/1751-8113/43/9/092001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a method for determining a complete set of integrals for a classical Hamiltonian that separates in orthogonal subgroup coordinates. As examples, we use it to determine complete sets of integrals, polynomial in the momenta, for some families of generalized oscillator and Kepler-Coulomb systems, hence demonstrating their superintegrability. The latter generalizes recent results of Verrier and Evans, and Rodriguez, Tempesta andWinternitz. Another example is given of a superintegrable system on a non-conformally flat space.
引用
收藏
页数:8
相关论文
共 11 条
  • [1] [Anonymous], 2004, CRM Proceedings and Lecture Notes
  • [2] Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
  • [3] Eisenhart L.P., 1925, Riemannian Geometry
  • [4] Exact and quasiexact solvability of second-order superintegrable quantum systems: I. Euclidean space preliminaries
    Kalnins, EG
    Miller, W
    Pogosyan, GS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
  • [5] Complete sets of invariants for dynamical systems that admit a separation of variables
    Kalnins, EG
    Kress, JM
    Miller, W
    Pogosyan, GS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) : 3592 - 3609
  • [6] KALNINS EG, 2009, ARXIV09122278MATHPH
  • [7] Symmetry reduction and superintegrable Hamiltonian systems
    Rodriguez, M. A.
    Tempesta, P.
    Winternitz, P.
    [J]. WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
  • [8] Exact solvability of superintegrable systems
    Tempesta, P
    Turbiner, AV
    Winternitz, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) : 4248 - 4257
  • [9] TEMPESTA P, 2010, J PHYS A, V43
  • [10] An infinite family of solvable and integrable quantum systems on a plane
    Tremblay, Frederick
    Turbiner, Alexander V.
    Winternitz, Pavel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)