Fraud Detection using Machine Learning in e-Commerce

被引:0
作者
Saputra, Adi [1 ]
Suharjito [1 ]
机构
[1] Bina Nusantara Univ Jakarta, Comp Sci Dept, BINUS Grad Program, Comp Sci, Jakarta 11480, Indonesia
关键词
Machine learning; random forest; Naive Bayes; SMOTE; neural network; e-commerce; confusion matrix; G-Mean; F1-score; transaction; fraud; DECISION TREE; ADABOOST;
D O I
10.14569/ijacsa.2019.0100943
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The volume of internet users is increasingly causing transactions on e-commerce to increase as well. We observe the quantity of fraud on online transactions is increasing too. Fraud prevention in e-commerce shall be developed using machine learning, this work to analyze the suitable machine learning algorithm, the algorithm to be used is the Decision Tree, Naive Bayes, Random Forest, and Neural Network. Data to be used is still unbalance. Synthetic Minority Over-sampling Technique (SMOTE) process is to be used to create balance data. Result of evaluation using confusion matrix achieve the highest accuracy of the neural network by 96 percent, random forest is 95 percent, Naive Bayes is 95 percent, and Decision tree is 91 percent. Synthetic Minority Over-sampling Technique (SMOTE) is able to increase the average of F1-Score from 67.9 percent to 94.5 percent and the average of G-Mean from 73.5 percent to 84.6 percent.
引用
收藏
页码:332 / 339
页数:8
相关论文
共 24 条
  • [1] Optimizing connection weights in neural networks using the whale optimization algorithm
    Aljarah, Ibrahim
    Faris, Hossam
    Mirjalili, Seyedali
    [J]. SOFT COMPUTING, 2018, 22 (01) : 1 - 15
  • [2] [Anonymous], 2018, RET E COMM REV FOR 2
  • [3] Asosiasi Penyelenggara Jasa Internet Indonesia, 2019, MAGAZINE APJI A 0423
  • [4] Asosiasi Penyelenggara Jasa Internet Indonesia, 2019, MAGAZINE APJI ASOSIA
  • [5] Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches
    Bouktif, Salah
    Fiaz, Ali
    Ouni, Ali
    Serhani, Mohamed Adel
    [J]. ENERGIES, 2018, 11 (07)
  • [6] Selecting methods for ecosystem service assessment: A decision tree approach
    Harrison, Paula A.
    Dunford, Rob
    Barton, David N.
    Kelemen, Eszter
    Martin-Lopez, Berta
    Norton, Lisa
    Termansen, Mette
    Saarikoski, Heli
    Hendriks, Kees
    Gomez-Baggethun, Erik
    Czucz, Balint
    Garcia-Llorente, Marina
    Howard, David
    Jacobs, Sander
    Karlsen, Martin
    Kopperoinen, Leena
    Madsen, Andes
    Rusch, Graciela
    van Eupen, Michiel
    Verweij, Peter
    Smith, Ron
    Tuomasjukka, Diana
    Zulian, Grazia
    [J]. ECOSYSTEM SERVICES, 2018, 29 : 481 - 498
  • [7] Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
    Hong, Haoyuan
    Liu, Junzhi
    Dieu Tien Bui
    Pradhan, Biswajeet
    Acharya, Tri Dev
    Binh Thai Pham
    Zhu, A-Xing
    Chen, Wei
    Bin Ahmad, Baharin
    [J]. CATENA, 2018, 163 : 399 - 413
  • [8] Lakshmi S., 2018, INT J APPL ENG RES, V13, P16819
  • [9] Laudon K.C., 2016, E-commerce: business, technology, society
  • [10] Differentially private Naive Bayes learning over multiple data sources
    Li, Tong
    Li, Jin
    Liu, Zheli
    Li, Ping
    Jia, Chunfu
    [J]. INFORMATION SCIENCES, 2018, 444 : 89 - 104