Progressive Domain Adaptation for Robot Vision Person Re-identification

被引:4
作者
Sha, Zijun [1 ]
Zeng, Zelong [2 ]
Wang, Zheng [3 ]
Natori, Yoichi [1 ]
Taniguchi, Yasuhiro [1 ]
Satoh, Shin'ichi [3 ]
机构
[1] Honda Res & Dev Co Ltd, Wako, Saitama, Japan
[2] Univ Tokyo, Tokyo, Japan
[3] Natl Inst Informat, Tokyo, Japan
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
关键词
Robot Vision; Domain Adaptation; Person Re-identification;
D O I
10.1145/3394171.3414358
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person re-identification has received much attention in the last few years, as it enhances the retrieval effectiveness in the video surveillance networks and video archive management. In this paper, we demonstrate a guiding robot with person followers system, which recognizes the follower using a person re-identification technology. It first adopts existing face recognition and person tracking methods to generate person tracklets with different IDs. Then, a classic person re-identification model, pre-trained on the surveillance dataset, is adapted to the new robot vision condition incrementally. The demonstration showcases the quality of robot follower focusing.
引用
收藏
页码:4488 / 4490
页数:3
相关论文
共 50 条
  • [1] Domain Adaptation for Person Re-Identification with Part Alignment and Progressive Pseudo-Labeling
    Pereira, Tiago de C. G.
    de Campos, Teofilo E.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (16)
  • [2] Part-aware Progressive Unsupervised Domain Adaptation for Person Re-Identification
    Yang, Fan
    Yan, Ke
    Lu, Shijian
    Jia, Huizhu
    Xie, Don
    Yu, Zongqiao
    Guo, Xiaowei
    Huang, Feiyue
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1681 - 1695
  • [3] Hybrid Vision Transformer for Domain Adaptable Person Re-identification
    Waseem, Muhammad Danish
    Tahir, Muhammad Atif
    Durrani, Muhammad Nouman
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 1463 : 114 - 122
  • [4] Domain Adaptation for Person Re-identification on New Unlabeled Data
    Pereira, Tiago de C. G.
    de Campos, Teofilo E.
    VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP, 2020, : 695 - 703
  • [5] Unsupervised adversarial domain adaptation with similarity diffusion for person re-identification
    Tang, Geyu
    Gao, Xingyu
    Chen, Zhenyu
    Zhong, Huicai
    NEUROCOMPUTING, 2021, 442 (442) : 337 - 347
  • [6] Collaborative learning mutual network for domain adaptation in person re-identification
    Tay, Chiat-Pin
    Yap, Kim-Hui
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14) : 12211 - 12222
  • [7] Domain adaptation with structural knowledge transfer learning for person re-identification
    Liu, Haojie
    Guo, Fang
    Xia, Daoxun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29321 - 29337
  • [8] Domain adaptation with structural knowledge transfer learning for person re-identification
    Haojie Liu
    Fang Guo
    Daoxun Xia
    Multimedia Tools and Applications, 2021, 80 : 29321 - 29337
  • [9] Unsupervised domain adaptation for person re-identification with iterative soft clustering
    Ainam, Jean-Paul
    Qin, Ke
    Owusu, Jim Wilson
    Lu, Guoming
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [10] Collaborative learning mutual network for domain adaptation in person re-identification
    Chiat-Pin Tay
    Kim-Hui Yap
    Neural Computing and Applications, 2022, 34 : 12211 - 12222