Quantification of protein secondary structure by 13C solid-state NMR

被引:5
|
作者
Andrade, Fabiana Diuk [1 ]
Forato, Lucimara Aparecida [1 ]
Bernardes Filho, Rubens [1 ]
Colnago, Luiz Alberto [1 ]
机构
[1] Embrapa Instrumentacao, Rua 15 Novembro 1452, BR-13560970 Sao Carlos, SP, Brazil
关键词
C-13; solid-stateNMR; Protein secondary structure; Insoluble protein; Singular value decomposition; INFRARED-SPECTROSCOPY; MEMBRANE-PROTEINS; CROSS-POLARIZATION; PEPTIDES; CONFORMATION; POLYPEPTIDES; MAIZE; FTIR;
D O I
10.1007/s00216-016-9484-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-resolution C-13 solid-state NMR stands out as one of the most promising techniques to solve the structure of insoluble proteins featuring biological and technological importance. The simplest nuclear magnetic resonance (NMR) spectroscopy method to quantify the secondary structure of proteins uses the areas of carbonyl and alpha carbon peaks. The quantification obtained by fitting procedures depends on the assignment of the peaks to the structure, type of line shape, number of peaks to be used, and other parameters that are set by the operator. In this paper, we demonstrate that the analysis of C-13 NMR spectra by a pattern recognition method-based on the singular value decomposition (SVD) regression, which does not depend on the operator-shows higher correlation coefficients for alpha-helix and beta-sheet (0.96 and 0.91, respectively) than Fourier transform infrared spectroscopy (FTIR) method. Therefore, the use of C-13 solid-state NMR spectra and SVD is a simple and reliable method for quantifying the secondary structures of insoluble proteins in solid-state.
引用
收藏
页码:3875 / 3879
页数:5
相关论文
共 50 条
  • [31] 13C solid-state NMR analysis of the DGEBA/TETA epoxy system
    Tavares, Maria Inês B.
    D'Almeida, J.R.M.
    Monteiro, S.N.
    1600, John Wiley & Sons Inc, New York, NY, United States (78):
  • [32] Solid-state 13C NMR study of poly(vinyl alcohol) gels
    Lai, S
    Casu, M
    Saba, G
    Lai, A
    Husu, I
    Masci, G
    Crescenzi, V
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2002, 21 (3-4) : 187 - 196
  • [33] Solid-state 13C NMR chemical shift nonequivalences in a polydiacetylene crystal
    Cholli, AL
    Sandman, DJ
    Maas, W
    MACROMOLECULES, 1999, 32 (13) : 4444 - 4446
  • [34] Solid-state 13C NMR reveals effects of temperature and hydration on elastin
    Perry, A
    Stypa, MP
    Tenn, BK
    Kumashiro, KK
    BIOPHYSICAL JOURNAL, 2002, 82 (02) : 1086 - 1095
  • [35] Solid-state 13C NMR studies on organic anorganic hybrid Zeolites
    Yamamoto, Katsutoshi
    Sakata, Yasuyuki
    Tatsumi, Takashi
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (42): : 12119 - 12123
  • [36] Solid-state 13C NMR chemical shift anisotropy tensors of polypeptides
    Wei, YF
    Lee, DK
    Ramamoorthy, A
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (25) : 6118 - 6126
  • [37] DETERMINATION OF WOOD COMPOSITION USING SOLID-STATE 13C NMR SPECTROSCOPY
    Kostryukov, Sergey G.
    Petrov, Pavel S.
    Tezikova, Veronica S.
    Masterova, Yuliya Yu
    Idris, Tulfikar J.
    Kostryukov, Nikita S.
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2021, 55 (5-6): : 461 - 468
  • [38] Investigation of seeds with high-resolution solid-state 13C NMR
    Bardet, M
    Foray, MF
    Bourguignon, J
    Krajewski, P
    MAGNETIC RESONANCE IN CHEMISTRY, 2001, 39 (12) : 733 - 738
  • [39] 3-Methylglutaric acid as a 13C solid-state NMR standard
    Barich, Dewey H.
    Gorman, Eric M.
    Zell, Mark T.
    Munson, Eric J.
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2006, 30 (3-4) : 125 - 129
  • [40] A solid-state 13C NMR analysis of molecular dynamics in aramide polymers
    McElheny, D
    Frydman, V
    Frydman, L
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2006, 29 (1-3) : 132 - 141