STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL
|
2020年
/
19卷
/
05期
关键词:
Convolutional neural network;
CNN;
image processing;
crack detection;
gas turbine;
machine learning;
deep learning;
classification;
computer vision;
structural health monitoring;
D O I:
10.1177/1475921719883202
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Gas turbine maintenance requires consistent inspections of cracks and other structural anomalies. The inspections provide information regarding the overall condition of the structures and yield information for estimating structural health and repair costs. Various image processing techniques have been used in the past to address the problem of automated visual crack detection with varying degrees of success. In this work, we propose a novel crack detection framework that utilizes techniques from both classical image processing and deep learning methodologies. The main contribution of this work is demonstrating that applying filters to image data in the pre-processing phase can significantly boost the classification performance of a convolutional neural network-based model. The developed architecture outperforms compared works by yielding a 96.26% classification accuracy on a data set of cracked surface images collected from gas turbines.
机构:
Univ Gustave Eiffel, LIGM UMR8049, F-77454 Eiffel, Marne La Vallee, FranceUniv Gustave Eiffel, LIGM UMR8049, F-77454 Eiffel, Marne La Vallee, France
Chambon, A.
Bellaouchou, A.
论文数: 0引用数: 0
h-index: 0
机构:
Air Liquide Digital & IT Global Data Operat, F-75011 Paris, FranceUniv Gustave Eiffel, LIGM UMR8049, F-77454 Eiffel, Marne La Vallee, France
Bellaouchou, A.
Atamuradov, V
论文数: 0引用数: 0
h-index: 0
机构:
Assyst Energy & Infrastruct, Data & Digital Factory, F-92400 Courbevoie, FranceUniv Gustave Eiffel, LIGM UMR8049, F-77454 Eiffel, Marne La Vallee, France
Atamuradov, V
Vitillo, F.
论文数: 0引用数: 0
h-index: 0
机构:
Assyst Energy & Infrastruct, Data & Digital Factory, F-92400 Courbevoie, FranceUniv Gustave Eiffel, LIGM UMR8049, F-77454 Eiffel, Marne La Vallee, France
Vitillo, F.
Plana, R.
论文数: 0引用数: 0
h-index: 0
机构:
Assyst Energy & Infrastruct, Data & Digital Factory, F-92400 Courbevoie, FranceUniv Gustave Eiffel, LIGM UMR8049, F-77454 Eiffel, Marne La Vallee, France
机构:
Sungkyunkwan Univ, Sch Civil Architectural Engn & Landscape Architect, Suwon 16419, South KoreaSungkyunkwan Univ, Sch Civil Architectural Engn & Landscape Architect, Suwon 16419, South Korea
Kolappan Geetha, Ganesh
Yang, Hyun-Jung
论文数: 0引用数: 0
h-index: 0
机构:
KEPCO E&C, Power Technol Res Inst, Smart Convergence Res Dept, Gimcheon 39660, South KoreaSungkyunkwan Univ, Sch Civil Architectural Engn & Landscape Architect, Suwon 16419, South Korea
Yang, Hyun-Jung
Sim, Sung-Han
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Sch Civil Architectural Engn & Landscape Architect, Suwon 16419, South KoreaSungkyunkwan Univ, Sch Civil Architectural Engn & Landscape Architect, Suwon 16419, South Korea