Deep-learning-based crack detection with applications for the structural health monitoring of gas turbines

被引:59
|
作者
Khani, Mahtab Mohtasham [1 ]
Vahidnia, Sahand [1 ]
Ghasemzadeh, Leila [1 ]
Ozturk, Y. Eren [2 ]
Yuvalaklioglu, Mustafa [2 ]
Akin, Selim [2 ]
Ure, Nazim Kemal [1 ]
机构
[1] Istanbul Tech Univ, TR-34467 Istanbul, Turkey
[2] Gen Elect, Istanbul, Turkey
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2020年 / 19卷 / 05期
关键词
Convolutional neural network; CNN; image processing; crack detection; gas turbine; machine learning; deep learning; classification; computer vision; structural health monitoring;
D O I
10.1177/1475921719883202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gas turbine maintenance requires consistent inspections of cracks and other structural anomalies. The inspections provide information regarding the overall condition of the structures and yield information for estimating structural health and repair costs. Various image processing techniques have been used in the past to address the problem of automated visual crack detection with varying degrees of success. In this work, we propose a novel crack detection framework that utilizes techniques from both classical image processing and deep learning methodologies. The main contribution of this work is demonstrating that applying filters to image data in the pre-processing phase can significantly boost the classification performance of a convolutional neural network-based model. The developed architecture outperforms compared works by yielding a 96.26% classification accuracy on a data set of cracked surface images collected from gas turbines.
引用
收藏
页码:1440 / 1452
页数:13
相关论文
共 50 条
  • [1] A review on deep learning-based structural health monitoring of civil infrastructures
    Ye, X. W.
    Jin, T.
    Yun, C. B.
    SMART STRUCTURES AND SYSTEMS, 2019, 24 (05) : 567 - 585
  • [2] Structural Crack Detection Using Deep Learning: An In-depth Review
    Khan, Safran
    Jan, Abdullah
    Seo, Suyoung
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (04) : 371 - 393
  • [3] Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review
    Azimi, Mohsen
    Eslamlou, Armin Dadras
    Pekcan, Gokhan
    SENSORS, 2020, 20 (10)
  • [4] Deep Learning based Crack Growth Analysis for Structural Health Monitoring
    Chambon, A.
    Bellaouchou, A.
    Atamuradov, V
    Vitillo, F.
    Plana, R.
    IFAC PAPERSONLINE, 2022, 55 (10): : 3268 - 3273
  • [5] Deep-learning-based Intrusion Detection with Enhanced Preprocesses
    Lin, Chia-Ju
    Huang, Yueh-Min
    Chen, Ruey-Maw
    SENSORS AND MATERIALS, 2022, 34 (06) : 2391 - 2401
  • [6] Fast Detection of Missing Thin Propagating Cracks during Deep-Learning-Based Concrete Crack/Non-Crack Classification
    Kolappan Geetha, Ganesh
    Yang, Hyun-Jung
    Sim, Sung-Han
    SENSORS, 2023, 23 (03)
  • [7] Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends
    Jia, Jing
    Li, Ying
    SENSORS, 2023, 23 (21)
  • [8] Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information
    Dunphy, Kyle
    Fekri, Mohammad Navid
    Grolinger, Katarina
    Sadhu, Ayan
    SENSORS, 2022, 22 (16)
  • [9] A Review on Deep-Learning-Based Cyberbullying Detection
    Hasan, Md. Tarek
    Hossain, Md. Al Emran
    Mukta, Md. Saddam Hossain
    Akter, Arifa
    Ahmed, Mohiuddin
    Islam, Salekul
    FUTURE INTERNET, 2023, 15 (05)
  • [10] Deep learning-based structural health monitoring
    Cha, Young-Jin
    Ali, Rahmat
    Lewis, John
    Buyukozturk, Oral
    AUTOMATION IN CONSTRUCTION, 2024, 161