Maximizing measures on metrizable non-compact spaces

被引:3
作者
Davie, Alexander M.
Urbanski, Mariusz
Zdunik, Anna
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
[3] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
基金
美国国家科学基金会;
关键词
maximizing measures; non-compact spaces; dynamical systems; equilibrium states;
D O I
10.1017/S0013091505000179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence and uniqueness of maximizing measures for various classes of continuous integrands on metrizable (non-compact) spaces and close subsets of Borel probability measures. We apply these results to various dynamical contexts, especially to hyperbolic mappings of the form f(lambda)(z) = lambda e(z), lambda not equal 0, and associated canonical maps F(lambda) of an infinite cylinder. It is then shown that, for all hyperbolic maps F(lambda), all dynamically maximizing measures have compact supports and, for all 0(+)-potentials phi, the set of (weak) limit points of equilibrium states of potentials t phi, t NE arrow +infinity, is non-empty and consists of dynamically maximizing measures.
引用
收藏
页码:123 / 151
页数:29
相关论文
共 11 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
Billingsley P., 1999, CONVERGENCE PROBABIL
[3]  
Contreras G, 2001, ERGOD THEOR DYN SYST, V21, P1379
[4]   Generic properties and problems of minimizing measures of Lagrangian systems [J].
Mane, R .
NONLINEARITY, 1996, 9 (02) :273-310
[5]   ACTION MINIMIZING INVARIANT-MEASURES FOR POSITIVE DEFINITE LAGRANGIAN SYSTEMS [J].
MATHER, JN .
MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) :169-207
[6]   Gibbs and equilibrium measures for elliptic functions [J].
Mayer, V ;
Urbanski, M .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) :657-683
[7]  
Parry William, 1969, Entropy and generators in ergodic theory
[8]  
PRZYTYCKI F, IN PRESS FRACTALS PL
[9]   Real analyticity of Hausdorff dimension of finer Julia sets of exponential family [J].
Urbanski, M ;
Zdunik, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :279-315
[10]  
Urbanski M, 2003, MICH MATH J, V51, P227