Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites

被引:121
作者
Mu, X. N. [1 ]
Cai, H. N. [1 ]
Zhang, H. M. [1 ]
Fan, Q. B. [1 ]
Wang, F. C. [1 ]
Zhang, Z. H. [1 ]
Ge, Y. X. [1 ]
Shi, R. [1 ]
Wu, Y. [1 ]
Wang, Z. [1 ]
Wang, D. D. [1 ]
Chang, S. [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti matrix composites; Nickel coated graphene; Interface; Tensile property; Strengthen mechanism; WALLED CARBON NANOTUBE; ENHANCED MECHANICAL-PROPERTIES; SUPERIOR TENSILE PROPERTIES; FEW-LAYER GRAPHENE; EMULSION POLYMERIZATION; STRENGTH ENHANCEMENT; THERMAL-CONDUCTIVITY; POWDER-METALLURGY; LOAD-TRANSFER; COPPER;
D O I
10.1016/j.carbon.2018.05.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An increasing number of reports have demonstrated enormous strength enhancements in titanium matrix composites (TiMCs) reinforced with graphene nanoflakes (GNFs) on account of the superior mechanical properties of GNFs. Unfortunately, the difficulty of uniform dispersion and severe interfacial reaction are simultaneously the most challenging and serious issues in GNFs reinforced TiMCs. In this work, we applied electroless plating method to prepare Ni decorated GNFs (Ni-GNFs) as a reinforcement in Ti matrix to uniformly disperse the GNFs in Ti matrix and relieve the severe interfacial reaction between metal and carbon nanophase. The composite reinforced by low content Ni-GNFs (0.05 wt% GNFs) exhibiting ultimate strength of 793 MPa (thorn40% compared to monolithic pure Ti), have been processed by short time ball milling process followed by spark plasma sintering (SPS) and hot-rolling (HR). Enormous strength increase of the composite can be attributed to a homogeneous distribution of Ni-GNFs in the Ti matrix coupled with the formation of special interface (Ti/Ti2Ni/nano-TiCX/Ni-GNFs). The load transfer mechanism of Ni-GNFs in composites was investigated by in-situ tensile test, which shows the great interfacial load transfer capability. This work provides a new strategy for dispersion and interface analysis of GNFs reinforced Ti matrix composites. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 65 条
  • [1] Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V
    Adegbenjo, A. O.
    Olubambi, P. A.
    Potgieter, J. H.
    Shongwe, M. B.
    Ramakokovhu, M.
    [J]. MATERIALS & DESIGN, 2017, 128 : 119 - 129
  • [2] Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation
    Antunes, E. F.
    Lobo, A. O.
    Corat, E. J.
    Trava-Airoldi, V. J.
    Martin, A. A.
    Verissimo, C.
    [J]. CARBON, 2006, 44 (11) : 2202 - 2211
  • [3] High strength - High conductivity double-walled carbon nanotube - Copper composite wires
    Arnaud, Claire
    Lecouturier, Florence
    Mesguich, David
    Mesguich, David
    Ferreira, Nelson
    Chevallier, Geoffroy
    Estournes, Claude
    Weibel, Alicia
    Laurent, Christophe
    [J]. CARBON, 2016, 96 : 212 - 215
  • [4] Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide
    Asgharzadeh, Hamed
    Sedigh, Maryam
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 728 : 47 - 62
  • [5] Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites
    Azarniya, Abolfazl
    Azarniya, Amir
    Sovizi, Saeed
    Hosseini, Hamid Reza Madaah
    Varol, Temel
    Kawasaki, Akira
    Ramakrishna, Seeram
    [J]. PROGRESS IN MATERIALS SCIENCE, 2017, 90 : 276 - 324
  • [6] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [7] Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper-Graphite Composites
    Boden, Andre
    Boerner, Benji
    Kusch, Patryk
    Firkowska, Izabela
    Reich, Stephanie
    [J]. NANO LETTERS, 2014, 14 (06) : 3640 - 3644
  • [8] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [9] Excellent strength-ductility combination in nickel-graphite nanoplatelet (GNP/Ni) nanocomposites
    Borkar, Tushar
    Mohseni, Hamidreza
    Hwang, Junyeon
    Scharf, Thomas W.
    Tiley, Jaimie S.
    Hong, Soon H.
    Banerjee, Rajarshi
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 646 : 135 - 144
  • [10] Reinforcement with graphene nanoflakes in titanium matrix composites
    Cao, Zhen
    Wang, Xudong
    Li, Jiongli
    Wu, Yue
    Zhang, Haiping
    Guo, Jianqiang
    Wang, Shengqiang
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 696 : 498 - 502