The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts

被引:26
|
作者
Hassan, Waqar [1 ]
Farid, Muhammad Asad [1 ]
Tosi, Anna [1 ]
Rane, Kedarnath [1 ]
Strano, Matteo [1 ]
机构
[1] Politecn Milan, Dipartimento Meccan, Via La Masa 1, Milan, Italy
关键词
Stainless steel 316L; 3D printing; Layer height; Extrusion velocity;
D O I
10.1007/s00170-021-07047-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extrusion-based additive manufacturing (EAM) is a relatively new process developed for the production of complex metallic and ceramic parts needed in smaller quantities. The debinding and sintering step of EAM is adopted from a well-known powder injection molding process. However, the 3D printing step needs special consideration to make EAM competent in the era of rapid manufacturing. This study is intended to investigate the effect of common printing parameters on the microstructure and mechanical properties of sintered stainless steel 316L (SS316L) parts manufactured through the EAM process. Part orientation (Ori), extrusion velocity (V-e), and layer height (h) were changed in experimental runs by following a full factorial design. Extrusion pressure as an indicator of melt stability and a grey relational grade as a combined response of sintered properties were analyzed against varying printing parameters. Physical characteristics measured during debinding and sintering show near isotopic shrinkage and the process is stable. Metallographic characterization in terms of porosity and grain size indicated minor differences when V-e and h were altered. Sintered parts showed improved properties when printed with vertical part orientation and h = 0.5 mm, whereas V-e which contributes significantly to the build-up rate was found to be responsible for melt stability. V-e at 12.5 mm/s exhibited melt stability and higher sintered properties.
引用
收藏
页码:3057 / 3067
页数:11
相关论文
共 50 条
  • [41] Corrosion behavior of additively manufactured 316L stainless steel in acidic media
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    MATERIALIA, 2018, 2 : 111 - 121
  • [42] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Trelewicz, Jason R.
    Halada, Gary P.
    Donaldson, Olivia K.
    Manogharan, Guha
    JOM, 2016, 68 (03) : 850 - 859
  • [43] Additively manufactured 316L stainless steel as a potential alternative implant material
    Alam, M. S.
    Campbell, S. R.
    Spivey, S. R.
    Dutta, G.
    Pal, N.
    Karan, A.
    Xie, J.
    Decoster, M. A.
    Murray, E. P.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 2358 - 2373
  • [44] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Kumar, Deepak
    Jhavar, Suyog
    Arya, Abhinav
    Prashanth, K. G.
    Suwas, Satyam
    INTERNATIONAL JOURNAL OF FRACTURE, 2022, 235 (01) : 61 - 78
  • [45] Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting
    Wang, Chengcheng
    Tan, Xipeng
    Liu, Erjia
    Tor, Shu Beng
    MATERIALS & DESIGN, 2018, 147 : 157 - 166
  • [46] Investigations on the Effect of Layers' Thickness and Orientations in the Machining of Additively Manufactured Stainless Steel 316L
    Dabwan, Abdulmajeed
    Anwar, Saqib
    Al-Samhan, Ali M.
    AlFaify, Abdullah
    Nasr, Mustafa M.
    MATERIALS, 2021, 14 (07)
  • [47] A multiscale investigation of deformation heterogeneity in additively manufactured 316L stainless steel
    Chen, Ling
    Liu, Wenyang
    Song, Lijun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
  • [48] The influence of printing strategies on fatigue crack growth behavior of an additively manufactured AISI 316L stainless steel
    Camacho, Jose
    Martins, Rui F. F.
    Branco, Ricardo
    Raimundo, Antonio
    Malca, Candida
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (10) : 3953 - 3965
  • [49] PROCESS PARAMETER OPTIMIZATION FOR ADDITIVELY MANUFACTURED STAINLESS STEEL 316L PARTS BY SELECTIVE ELECTRON BEAM MELTING
    Wang, Chengcheng
    Tan, Xipeng
    Liu, Erjia
    Tor, Shu Beng
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 517 - 522
  • [50] Vacuum brazing of 316L stainless steel based on additively manufactured and conventional material grades
    Tillmann, W.
    Henning, T.
    Wojarski, L.
    20TH CHEMNITZ SEMINAR ON MATERIALS ENGINEERING, 2018, 373