Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

被引:62
作者
Andric, Pavle [1 ]
Meyer, Anne S. [1 ]
Jensen, Peter A. [1 ]
Dam-Johansen, Kim [1 ]
机构
[1] Tech Univ Denmark, Dept Chem & Biochem Engn, DK-2800 Lyngby, Denmark
关键词
Cellulases; Lignocellulose; Product inhibition; Product removal; Reactor design; TRICHODERMA-REESEI CELLULASE; BARLEY STRAW; BETA-GLUCOSIDASE; SIMULTANEOUS SACCHARIFICATION; SUBSTRATE-INHIBITION; INSOLUBLE CELLULOSE; ASPERGILLUS-NIGER; MEMBRANE REACTOR; FERMENTATION; SOFTWOOD;
D O I
10.1007/s12010-008-8512-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw with the cellulolytic enzyme system, Celluclast (R) 1.5 L, from Trichoderma reesei, supplemented with a beta-glucosidase, Novozym (R) 188, from Aspergillus niger. Addition of glucose (0-40 g/L) significantly decreased the enzyme-catalyzed glucose formation rates and final glucose yields, in a dose-dependent manner, during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48-72 h of reaction recovered from 20-40% to become approximate to 70% of the rate recorded during 6-24 h of reaction. Although Michaelis-Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis-Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis-Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product removal during enzymatic hydrolysis of lignocellulose.
引用
收藏
页码:280 / 297
页数:18
相关论文
共 40 条