Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel

被引:24
|
作者
Monzo, Patricia [1 ]
Puttige, Anjan Rao [1 ]
Acuna, Jose [1 ]
Mogensen, Palne [1 ]
Cazorla, Antonio [2 ]
Rodriguez, Juan [3 ]
Montagud, Carla [2 ]
Cerdeira, Fernando [4 ]
机构
[1] KTH Royal Inst Technol, Brinellvagen 68, S-10044 Stockholm, Sweden
[2] Univ Politecn Valencia, IUIIE, Camino Vera S-N, E-46022 Valencia, Spain
[3] EnergyLab, Fonte Abelleiras S-N,Campus Univ Vigo, Vigo 36310, Spain
[4] Univ Vigo, Maxwell 16, Vigo 36310, Spain
关键词
Borehole heat exchanger; Numerical modeling; Monitoring; Fluid temperature prediction; Boundary condition; GEOTHERMAL BOREHOLES; FIELDS; FLUID; PUMP; PERFORMANCE; OPERATION; SYSTEMS; FLOW; WALL;
D O I
10.1016/j.enbuild.2018.04.057
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With bore fields for energy extraction and injection, it is often necessary to predict the temperature response to heat loads for many years ahead. Mathematical methods, both analytical and numerical, with different degrees of sophistication, are employed. Often the g-function concept is used, in which the borehole wall is assumed to have a uniform temperature and the heat injected is constant over time. Due to the unavoidable thermal resistance between the borehole wall and the circulating fluid and with varying heat flux along the boreholes, the concept of uniform borehole wall temperature is violated, which distorts heat flow distribution between boreholes. This aspect has often been disregarded. This paper describes improvements applied to a previous numerical model approach. Improvements aim at taking into account the effect of thermal resistance between the fluid and the borehole wall. The model employs a highly conductive material (HCM) embedded in the boreholes and connected to an HCM bar above the ground surface. The small temperature difference occurring within the HCM allows the ground to naturally control the conditions at the wall of all boreholes and the heat flow distribution to the boreholes. The thermal resistance between the fluid and the borehole wall is taken into account in the model by inserting a thermally resistive layer at the borehole wall. Also, the borehole ends are given a hemispherical shape to reduce the fluctuations in the temperature gradients there. The improvements to the HCM model are reflected in a changed distribution of the heat flow to the different boreholes. Changes increase with the number of boreholes. The improvements to the HCM model are further illustrated by predicting fluid temperatures for measured variable daily loads of two monitored GCHP installations. Predictions deviate from measured values with a mean absolute error within 1.1 and 1.6 K. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [31] The simplified calculation method of the thermal response radius for vertical borehole heat exchangers
    Zhang, Zhengwei (zwzhang10@126.com), 1600, Science Press (37):
  • [32] RECOVERY TIMES AFTER THERMAL RESPONSE TESTS ON VERTICAL BOREHOLE HEAT EXCHANGERS
    Javed, S.
    Claesson, J.
    Ra, Beier
    23RD IIR INTERNATIONAL CONGRESS OF REFRIGERATION, 2011, 23 : 2034 - +
  • [33] On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers
    Badenes, Borja
    Mateo Pla, Miguel Angel
    Lemus-Zuniga, Lenin G.
    Saiz Mauleon, Begon
    Urchueguia, Javier F.
    ENERGIES, 2017, 10 (09):
  • [34] Use of temperature derivative to analyze thermal response tests on borehole heat exchangers
    Beier, Richard A.
    APPLIED THERMAL ENGINEERING, 2018, 134 : 298 - 309
  • [35] Distributed thermal response tests on pipe-in-pipe borehole heat exchangers
    Acuna, Jose
    Palm, Bjorn
    APPLIED ENERGY, 2013, 109 : 312 - 320
  • [36] A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers
    Sapinska-Sliwa, Aneta
    Rosen, Marc A.
    Gonet, Andrzej
    Kowalczyk, Joanna
    Sliwa, Tomasz
    ENERGIES, 2019, 12 (06)
  • [37] A numerical model for transient simulation of borehole heat exchangers
    Biglarian, Hassan
    Abbaspour, Madjid
    Saidi, Mohammad Hassan
    RENEWABLE ENERGY, 2017, 104 : 224 - 237
  • [38] The heat transfer analysis and optimal design on borehole ground heat exchangers
    Zhang, Wenke
    Yang, Hongxing
    Lu, Lin
    Fang, Zhaohong
    INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 : 385 - 388
  • [39] Numerical modeling of slinky-coil horizontal ground heat exchangers
    Fujii, Hikari
    Nishi, Keita
    Komaniwa, Yoshihito
    Chou, Naokatsu
    GEOTHERMICS, 2012, 41 : 55 - 62
  • [40] Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers
    Sapinska-Sliwa, Aneta
    Sliwa, Tomasz
    Twardowski, Kazimierz
    Szymski, Krzysztof
    Gonet, Andrzej
    Zuk, Pawel
    ENERGIES, 2020, 13 (14)