Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel

被引:24
|
作者
Monzo, Patricia [1 ]
Puttige, Anjan Rao [1 ]
Acuna, Jose [1 ]
Mogensen, Palne [1 ]
Cazorla, Antonio [2 ]
Rodriguez, Juan [3 ]
Montagud, Carla [2 ]
Cerdeira, Fernando [4 ]
机构
[1] KTH Royal Inst Technol, Brinellvagen 68, S-10044 Stockholm, Sweden
[2] Univ Politecn Valencia, IUIIE, Camino Vera S-N, E-46022 Valencia, Spain
[3] EnergyLab, Fonte Abelleiras S-N,Campus Univ Vigo, Vigo 36310, Spain
[4] Univ Vigo, Maxwell 16, Vigo 36310, Spain
关键词
Borehole heat exchanger; Numerical modeling; Monitoring; Fluid temperature prediction; Boundary condition; GEOTHERMAL BOREHOLES; FIELDS; FLUID; PUMP; PERFORMANCE; OPERATION; SYSTEMS; FLOW; WALL;
D O I
10.1016/j.enbuild.2018.04.057
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With bore fields for energy extraction and injection, it is often necessary to predict the temperature response to heat loads for many years ahead. Mathematical methods, both analytical and numerical, with different degrees of sophistication, are employed. Often the g-function concept is used, in which the borehole wall is assumed to have a uniform temperature and the heat injected is constant over time. Due to the unavoidable thermal resistance between the borehole wall and the circulating fluid and with varying heat flux along the boreholes, the concept of uniform borehole wall temperature is violated, which distorts heat flow distribution between boreholes. This aspect has often been disregarded. This paper describes improvements applied to a previous numerical model approach. Improvements aim at taking into account the effect of thermal resistance between the fluid and the borehole wall. The model employs a highly conductive material (HCM) embedded in the boreholes and connected to an HCM bar above the ground surface. The small temperature difference occurring within the HCM allows the ground to naturally control the conditions at the wall of all boreholes and the heat flow distribution to the boreholes. The thermal resistance between the fluid and the borehole wall is taken into account in the model by inserting a thermally resistive layer at the borehole wall. Also, the borehole ends are given a hemispherical shape to reduce the fluctuations in the temperature gradients there. The improvements to the HCM model are reflected in a changed distribution of the heat flow to the different boreholes. Changes increase with the number of boreholes. The improvements to the HCM model are further illustrated by predicting fluid temperatures for measured variable daily loads of two monitored GCHP installations. Predictions deviate from measured values with a mean absolute error within 1.1 and 1.6 K. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [21] Thermal response tests on deep borehole heat exchangers with geothermal gradient
    Beier, Richard A.
    APPLIED THERMAL ENGINEERING, 2020, 178
  • [22] Insights into parameter estimation for thermal response tests on borehole heat exchangers
    Beier, Richard A.
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2019, 25 (08) : 947 - 962
  • [23] Deconvolution and convolution methods for thermal response tests on borehole heat exchangers
    Beier, Richard A.
    GEOTHERMICS, 2020, 86
  • [24] Thermal Response Factors for Vertical Ground Heat Exchangers
    Ahmadfard, Mohammadamin
    Bernier, Michel
    ASHRAE JOURNAL, 2022, 64 : 14 - 21
  • [25] Uncertainty in numerical models of borehole heat exchangers
    Ruehaak, Wolfram
    Steiner, Sarah
    Welsch, Bastian
    Sass, Ingo
    GRUNDWASSER, 2015, 20 (04) : 243 - 251
  • [26] Numerical investigation into the thermal interference of slinky ground heat exchangers
    Luo, Man
    Gan, Guohui
    APPLIED THERMAL ENGINEERING, 2024, 248
  • [27] NUMERICAL INVESTIGATION OF GROUND-COUPLED VERTICAL BOREHOLE HEAT EXCHANGERS WITH GROUNDWATER ADVECTION
    Piller, Marzio
    Scorpo, Alberto Liuzzo
    HEAT TRANSFER RESEARCH, 2012, 43 (04) : 343 - 362
  • [28] A composite analytical model to predict the thermal performance of borehole ground heat exchangers within stratified ground
    Gao, Wu
    Qadrdan, Meysam
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [29] Thermal response testing of a multiple borehole ground heat exchanger
    Javed, Saqib
    Fahlen, Per
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2011, 6 (02) : 141 - 148
  • [30] Influence of groundwater levels on effective thermal conductivity of the ground and heat transfer rate of borehole heat exchangers
    Luo, Jin
    Tuo, Jiasheng
    Huang, Wei
    Zhu, YongQiang
    Jiao, YuYong
    Xiang, Wei
    Rohn, Joachim
    APPLIED THERMAL ENGINEERING, 2018, 128 : 508 - 516