Fabricating colloidal particles with photolithography and their interactions at an air-water interface

被引:89
|
作者
Brown, ABD
Smith, CG
Rennie, AR
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Kings Coll London, Dept Chem, Strand, London WC2R 2LS, England
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 01期
关键词
D O I
10.1103/PhysRevE.62.951
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A technique for fabricating nonspherical colloidal particles using photolithography has been developed. The particles are plate shaped and their profile within the plane of the plate is defined by a lithography mask and so can be any form desired. The thickness of the particles can also be controlled by varying the amount of material in the particle, and also by using the stresses induced during the evaporation of materials to distort the particles out of the plane. The particle-particle interactions can be tailored and made anisotropic by coating different faces of the particles with different chemicals or by making them of different materials. This technique is used to produce curved disks that are hydrophobic on their convex face and hydrophilic on their concave face. These particles are studied at an air-water interface, where the majority Lie with their hydrophobic face uppermost. The curvature of the particles distorts the water surface in a manner that can be described by a series expansion. The symmetry of this function is used to explain the interactions of the particles and the resulting ordered flocculated structures observed. Such anisotropic forces in two dimensions have not been studied previously on a colloidal length scale to our knowledge and extend the field of control of particles at interfaces.
引用
收藏
页码:951 / 960
页数:10
相关论文
共 50 条
  • [21] Capillary Forces between Sediment Particles and an Air-Water Interface
    Chatterjee, Nirmalya
    Lapin, Sergey
    Flury, Markus
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (08) : 4411 - 4418
  • [22] Absence of water clusters in visible light interactions with the air-water interface
    Ahmed, Musahid
    Lu, Wenchao
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2025, 122 (12)
  • [23] Soy protein-polysaccharides interactions at the air-water interface
    Martinez, Karina D.
    Carrera Sanchez, Cecilio
    Pizones Ruiz-Henestrosa, Victor
    Rodriguez Patino, Juan M.
    Pilosof, Ana M. R.
    FOOD HYDROCOLLOIDS, 2007, 21 (5-6) : 804 - 812
  • [24] Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air-water interface
    Baeza, R
    Sanchez, CC
    Pilosof, AMR
    Patino, JMR
    FOOD HYDROCOLLOIDS, 2005, 19 (02) : 239 - 248
  • [25] Modulating photothermocapillary interactions for logic operations at the air-water interface
    Tanjeem, Nabila
    Kreienbrink, Kendra M.
    Hayward, Ryan C.
    SOFT MATTER, 2024, 20 (08) : 1689 - 1693
  • [26] Interactions of polysaccharides with β-lactoglobulin spread monolayers at the air-water interface
    Baeza, R
    Sanchez, CC
    Pilosof, AMR
    Patino, JMR
    FOOD HYDROCOLLOIDS, 2004, 18 (06) : 959 - 966
  • [27] Polymer-surfactant interactions at the air-water interface.
    Jean, B
    Lee, LT
    Cabane, B
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U525 - U526
  • [28] INTERACTIONS BETWEEN CHOLESTEROL AND LECITHINS IN MONOLAYERS AT AIR-WATER INTERFACE
    TINOCO, J
    MCINTOSH, DJ
    CHEMISTRY AND PHYSICS OF LIPIDS, 1970, 4 (01) : 72 - &
  • [29] Prothrombin interactions with phospholipid monolayers at the air-water interface.
    Schaper, ET
    Serfis, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U342 - U342
  • [30] Protein-lipid interactions at the air-water interface.
    Green, RJ
    Lad, MD
    Birembaut, F
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U464 - U464