Note on the characteristic rank of vector bundles

被引:15
作者
Naolekar, Aniruddha C. [1 ]
Thakur, Ajay Singh [1 ]
机构
[1] Indian Stat Inst, Stat Math UNit, Bangalore 560059, Karnataka, India
关键词
Stiefel-Whitney class; characteristic rank; Dold manifold; Moore space; stunted projective space; CUP-LENGTH;
D O I
10.2478/s12175-014-0289-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the notion of characteristic rank, charrank (X) (xi), of a real vector bundle xi over a connected finite CW-complex X. This is a bundle-dependent version of the notion of characteristic rank introduced by JA(0)lius Korba in 2010. We obtain bounds for the cup length of manifolds in terms of the characteristic rank of vector bundles generalizing a theorem of Korba and compute the characteristic rank of vector bundles over the Dold manifolds, the Moore spaces and the stunted projective spaces amongst others.
引用
收藏
页码:1525 / 1540
页数:16
相关论文
共 13 条
[1]   VECTOR FIELDS ON SPHERES [J].
ADAMS, JF .
ANNALS OF MATHEMATICS, 1962, 75 (03) :603-&
[2]  
Atiyah M., 1961, P CAMBRIDGE PHILOS S, V57, P223
[3]   A note on the characteristic rank of null-cobordant manifolds [J].
Balko, L'. ;
Korbas, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 140 (1-2) :145-150
[4]  
BALKO L'., 2010, GROUP ACTIONS HOMOGE, P1
[6]  
Dold A., 1956, Math. Zeit., V65, P25
[7]  
Hatcher A., 2002, Algebraic topology
[8]  
Husemoller D, 1966, Fibre bundles
[9]   Bounds for the cup-length of Poincare spaces and their applications [J].
Korbas, Julius .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) :2976-2986
[10]   The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds [J].
Korbas, Julius .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (01) :69-81