DESCENDANT LOG GROMOV-WITTEN INVARIANTS FOR TORIC VARIETIES AND TROPICAL CURVES

被引:39
作者
Mandel, Travis [1 ]
Ruddat, Helge [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[2] JGU Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
基金
新加坡国家研究基金会; 美国国家科学基金会; 欧洲研究理事会;
关键词
STABLE MAPS; INTERSECTION THEORY; MIRROR SYMMETRY; GEOMETRY; STACKS;
D O I
10.1090/tran/7936
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using degeneration techniques, we prove the correspondence of tropical curve counts and log Gromov-Witten invariants with general incidence and psi-class conditions in toric varieties for genus zero curves. For higher-genus situations, we prove the correspondence for the non-superabundant part of the invariant. We also relate the log invariants to the ordinary ones, in particular explaining the appearance of negative multiplicities in the descendant correspondence result of Mark Gross.
引用
收藏
页码:1109 / 1152
页数:44
相关论文
共 50 条
[31]   Two-Sphere Partition Functions and Gromov-Witten Invariants [J].
Jockers, Hans ;
Kumar, Vijay ;
Lapan, Joshua M. ;
Morrison, David R. ;
Romo, Mauricio .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (03) :1139-1170
[32]   QUANTUM KIRWAN MORPHISM AND GROMOV-WITTEN INVARIANTS OF QUOTIENTS I [J].
Woodward, Chris T. .
TRANSFORMATION GROUPS, 2015, 20 (02) :507-556
[33]   The Double Gromov-Witten Invariants of Hirzebruch Surfaces are Piecewise Polynomial [J].
Ardila, Federico ;
Brugalle, Erwan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (02) :614-641
[34]   QUANTUM KIRWAN MORPHISM AND GROMOV-WITTEN INVARIANTS OF QUOTIENTS III [J].
Woodward, Chris T. .
TRANSFORMATION GROUPS, 2015, 20 (04) :1155-1193
[35]   Gromov-Witten theory of complete intersections via nodal invariants [J].
Arguz, Hulya ;
Bousseau, Pierrick ;
Pandharipande, Rahul ;
Zvonkine, Dimitri .
JOURNAL OF TOPOLOGY, 2023, 16 (01) :264-343
[36]   Energy bounds and vanishing results for the Gromov-Witten invariants of the projective space [J].
Zinger, Aleksey .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
[37]   Gromov-Witten invariants of local P2 andmodular forms [J].
Coates, Tom ;
Iritani, Hiroshi .
KYOTO JOURNAL OF MATHEMATICS, 2021, 61 (03) :543-706
[38]   Weighted-blowup correspondence of orbifold Gromov-Witten invariants and applications [J].
Chen, Bohui ;
Du, Cheng-Yong ;
Hu, Jianxun .
MATHEMATISCHE ANNALEN, 2019, 374 (3-4) :1459-1523
[39]   K-theoretic Gromov-Witten Invariants of Lines in Homogeneous Spaces [J].
Li, Changzheng ;
Mihalcea, Leonardo C. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (17) :4625-4664
[40]   A RELATION FOR GROMOV-WITTEN INVARIANTS OF LOCAL CALABI-YAU THREEFOLDS [J].
Lau, Siu-Cheong ;
Leung, Naichung Conan ;
Wu, Baosen .
MATHEMATICAL RESEARCH LETTERS, 2011, 18 (05) :943-956