DESCENDANT LOG GROMOV-WITTEN INVARIANTS FOR TORIC VARIETIES AND TROPICAL CURVES

被引:39
作者
Mandel, Travis [1 ]
Ruddat, Helge [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[2] JGU Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
基金
新加坡国家研究基金会; 美国国家科学基金会; 欧洲研究理事会;
关键词
STABLE MAPS; INTERSECTION THEORY; MIRROR SYMMETRY; GEOMETRY; STACKS;
D O I
10.1090/tran/7936
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using degeneration techniques, we prove the correspondence of tropical curve counts and log Gromov-Witten invariants with general incidence and psi-class conditions in toric varieties for genus zero curves. For higher-genus situations, we prove the correspondence for the non-superabundant part of the invariant. We also relate the log invariants to the ordinary ones, in particular explaining the appearance of negative multiplicities in the descendant correspondence result of Mark Gross.
引用
收藏
页码:1109 / 1152
页数:44
相关论文
共 50 条
[21]   Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds [J].
Liu, Chiu-Chu Melissa ;
Sheshmani, Artan .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
[22]   STABILITY CONDITIONS, WALL-CROSSING AND WEIGHTED GROMOV-WITTEN INVARIANTS [J].
Bayer, Arend ;
Manin, Yu. I. .
MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (01) :3-32
[23]   Theta functions, broken lines and 2-marked log Gromov-Witten invariants [J].
Graefnitz, Tim .
MANUSCRIPTA MATHEMATICA, 2025, 176 (04)
[24]   QUANTUM KIRWAN MORPHISM AND GROMOV-WITTEN INVARIANTS OF QUOTIENTS II [J].
Woodward, Chris T. .
TRANSFORMATION GROUPS, 2015, 20 (03) :881-920
[25]   Intrinsic mirror symmetry and punctured Gromov-Witten invariants [J].
Gross, Mark ;
Siebert, Bernd .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 :199-230
[26]   Open Gromov-Witten Invariants from the Augmentation Polynomial [J].
Mahowald, Matthew .
SYMMETRY-BASEL, 2017, 9 (10)
[27]   Open Gromov-Witten invariants from the Fukaya category [J].
Hugtenburg, Kai .
ADVANCES IN MATHEMATICS, 2024, 441
[28]   Mirror symmetry for closed, open, and unoriented Gromov-Witten invariants [J].
Popa, Alexandra ;
Zinger, Aleksey .
ADVANCES IN MATHEMATICS, 2014, 259 :448-510
[29]   The genus 0 Gromov-Witten invariants of projective complete intersections [J].
Zinger, Aleksey .
GEOMETRY & TOPOLOGY, 2014, 18 (02) :1035-1114
[30]   COMPARISON THEOREMS FOR GROMOV-WITTEN INVARIANTS OF SMOOTH PAIRS AND OF DEGENERATIONS [J].
Abramovich, Dan ;
Marcus, Steffen ;
Wise, Jonathan .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (04) :1611-1667