The Laplace transform on time scales revisited

被引:39
作者
Davis, John M. [1 ]
Gravagne, Ian A.
Jackson, Billy J.
Marks, Robert J., II
Ramos, Alice A.
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Baylor Univ, Dept Elect & Comp Engn, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
time scale; laplace transform; convolution; Dirac delta;
D O I
10.1016/j.jmaa.2006.10.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we reexamine the time scale Laplace transform as defined by Bohner and Peterson [M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001; M. Bohner, A. Peterson, Laplace transform and Z-transforrn: Unification and extension, Methods Appl. Anal. 9 (1) (2002) 155-162]. In particular, we give conditions on the class of functions which have a transform, develop an inversion formula for the transform, and further, we provide a convolution for the transform. The notion of convolution leads to considering its algebraic structure-in particular the existence of an identity element-motivating the development of the Dirac delta functional on time scales. Applications and examples of these concepts are given. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1291 / 1307
页数:17
相关论文
共 50 条
[21]   Asynchronous time-parallel method based on Laplace transform [J].
Magoules, Frederic ;
Zou, Qinmeng .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (01) :179-194
[22]   On the Generalized Laplace Transform [J].
Bosch, Paul ;
Carmenate Garcia, Hector Jose ;
Manuel Rodriguez, Jose ;
Maria Sigarreta, Jose .
SYMMETRY-BASEL, 2021, 13 (04)
[23]   Spot volatility estimation using the Laplace transform [J].
Curato, Imma Valentina ;
Mancino, Maria Elvira ;
Recchioni, Maria Cristina .
ECONOMETRICS AND STATISTICS, 2018, 6 :22-43
[24]   LAPLACE TRANSFORM METHOD FOR PARABOLIC PROBLEMS WITH TIME-DEPENDENT COEFFICIENTS [J].
Lee, Hyoseop ;
Lee, Jinwoo ;
Sheen, Dongwoo .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :112-125
[25]   Numerical simulation of time partial fractional diffusion model by Laplace transform [J].
Ali, Amjad ;
Suwan, Iyad ;
Abdeljawad, Thabet ;
Abdullah .
AIMS MATHEMATICS, 2022, 7 (02) :2878-2890
[26]   Bilateral Laplace Transforms on Time Scales: Convergence, Convolution, and the Characterization of Stationary Stochastic Time Series [J].
John M. Davis ;
Ian A. Gravagne ;
Robert J. Marks .
Circuits, Systems and Signal Processing, 2010, 29 :1141-1165
[27]   Bilateral Laplace Transforms on Time Scales: Convergence, Convolution, and the Characterization of Stationary Stochastic Time Series [J].
Davis, John M. ;
Gravagne, Ian A. ;
Marks, Robert J., II .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2010, 29 (06) :1141-1165
[28]   Nahm transform and parabolic minimal Laplace transform [J].
Szabo, Szilard .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (11) :2241-2258
[29]   ABOUT THE EQUALITY OF THE TRANSFORM OF LAPLACE TO THE TRANSFORM OF FOURIER [J].
Pavlov, A. V. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2016, 5 (01) :21-30
[30]   Delta L'Hospital-, Laplace- and Variable Limit-Type Monotonicity Rules on Time Scales [J].
Mao, Zhong-Xuan ;
Tian, Jing-Feng .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)