The Laplace transform on time scales revisited

被引:39
作者
Davis, John M. [1 ]
Gravagne, Ian A.
Jackson, Billy J.
Marks, Robert J., II
Ramos, Alice A.
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Baylor Univ, Dept Elect & Comp Engn, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
time scale; laplace transform; convolution; Dirac delta;
D O I
10.1016/j.jmaa.2006.10.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we reexamine the time scale Laplace transform as defined by Bohner and Peterson [M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001; M. Bohner, A. Peterson, Laplace transform and Z-transforrn: Unification and extension, Methods Appl. Anal. 9 (1) (2002) 155-162]. In particular, we give conditions on the class of functions which have a transform, develop an inversion formula for the transform, and further, we provide a convolution for the transform. The notion of convolution leads to considering its algebraic structure-in particular the existence of an identity element-motivating the development of the Dirac delta functional on time scales. Applications and examples of these concepts are given. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1291 / 1307
页数:17
相关论文
共 6 条
[1]  
Berg L., 1967, Introduction to the Operational Calculus
[2]  
Bohner M., 2002, METHODS APPL ANAL, V9, P155, DOI 10.4310/MAA.2002.v9.n1.a6
[3]  
Gard T, 2003, DYN SYST APPL, V12, P131
[4]   Integration on time scales [J].
Guseinov, GS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (01) :107-127
[5]  
Kelley W.G., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
Pötzsche C, 2003, DISCRETE CONT DYN S, V9, P1223