A matching prior for the shape parameter of the exponential power distribution

被引:1
作者
Wang, Min [1 ]
Lu, Tao [2 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[2] SUNY Albany, Dept Epidemiol & Biostat, Rensselaer, NY 12144 USA
关键词
Exponential power distribution; Reference prior; First-order; Second-order; Quantiles; Regression models; NONINFORMATIVE PRIORS; FREQUENTIST VALIDITY; INFERENCE;
D O I
10.1016/j.spl.2014.11.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a class of matching priors for the shape parameter of the exponential power distribution, which controls the thickness of the density tails. It is shown that a second-order matching prior does not exist in the subclass of the considered priors. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 154
页数:5
相关论文
共 14 条
[1]   Use of exponential power distributions for mixture models in the presence of covariates [J].
Achcar, JA ;
Pereira, GD .
JOURNAL OF APPLIED STATISTICS, 1999, 26 (06) :669-679
[2]  
Berger J.O., 1992, BAYESIAN STAT, V4, P35
[3]  
Box GE, 2011, Bayesian Inference in Statistical Analysis
[4]  
COX DR, 1987, J ROY STAT SOC B MET, V49, P1
[5]  
Datta G.S., 2000, CALCUTTA STAT ASS B, V50, P179, DOI DOI 10.1177/0008068320000306
[6]   On priors providing frequentist validity of Bayesian inference for multiple parametric functions [J].
Datta, GS .
BIOMETRIKA, 1996, 83 (02) :287-298
[7]   Some remarks on noninformative priors [J].
Datta, GS ;
Ghosh, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1357-1363
[8]  
Datta GS, 2000, ANN STAT, V28, P1414
[9]  
DATTA GS, 2004, LECT NOTES STAT, V178
[10]  
Ferreira M., 2014, J STAT DISTRIB APPL, V1, P1