Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades

被引:22
作者
Zhu, Jie [1 ,2 ]
Cai, Xin [2 ]
Gu, Rongrong [2 ]
机构
[1] Jiaxing Univ, Coll Civil Engn & Architecture, Jiaxing 314001, Peoples R China
[2] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
关键词
integrated optimization design; horizontal axis wind turbine; multi-objective optimization; annual energy production; blade mass; FINITE-ELEMENT-METHOD; GENETIC ALGORITHM; EVOLUTIONARY COMPUTATION; NSGA-II;
D O I
10.3390/en9020066
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT) blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM) theory, a structural analysis module employing the Finite Element Method (FEM) and a multi-objective optimization module utilizing the non-dominated sorting genetic algorithm. The former two provide a sufficiently accurate solution of the aerodynamic and structural performances of the blade; the latter handles the design variables of the optimization problem, namely, the main geometrical shape and structural parameters of the blade, and promotes function optimization. The scope of the procedure is to achieve the best trade-off performances between the maximum Annual Energy Production (AEP) and the minimum blade mass under various design requirements. To prove the efficiency and reliability of the procedure, a commercial 1.5 megawatt (MW) HAWT blade is used as a case study. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 27 条
[11]   Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades [J].
Grujicic, M. ;
Arakere, G. ;
Pandurangan, B. ;
Sellappan, V. ;
Vallejo, A. ;
Ozen, M. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2010, 19 (08) :1116-1127
[12]  
Hansen M.O.L., 2015, Aerodynamics of Wind Turbines, Vthird, DOI DOI 10.4324/9781315769981
[13]   Optimisation of wind turbine blades [J].
Jureczko, M ;
Pawlak, M ;
Mezyk, A .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 167 (2-3) :463-471
[14]   Developement and verification of a performance based optimal design software for wind turbine blades [J].
Kim, Bumsuk ;
Kim, Woojune ;
Lee, Sanglae ;
Bae, Sungyoul ;
Lee, Youngho .
RENEWABLE ENERGY, 2013, 54 :166-172
[15]   Optimization of wind turbine energy and power factor with an evolutionary computation algorithm [J].
Kusiak, Andrew ;
Zheng, Haiyang .
ENERGY, 2010, 35 (03) :1324-1332
[16]   Fluid-structure interaction of FRP wind turbine blades under aerodynamic effect [J].
Lee, Ya-Jung ;
Jhan, Yu-Ti ;
Chung, Cheng-Hsien .
COMPOSITES PART B-ENGINEERING, 2012, 43 (05) :2180-2191
[17]   Blade layers optimization of wind turbines using FAST and improved PSO Algorithm [J].
Liao, C. C. ;
Zhao, X. L. ;
Xu, J. Z. .
RENEWABLE ENERGY, 2012, 42 :227-233
[18]  
Locke J., 2003, P ASME 2003 WIND EN, P324
[19]   Frequency optimization of a wind turbine blade in pitching motion [J].
Maalawi, K. Y. ;
Badr, M. A. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2010, 224 (A4) :545-554
[20]   Multiple Performance Optimization in Machining of GFRP Composites by a PCD Tool using Non-dominated Sorting Genetic Algorithm (NSGA-II) [J].
Palanikumar, K. ;
Latha, B. ;
Senthilkumar, V. S. ;
Karthikeyan, R. .
METALS AND MATERIALS INTERNATIONAL, 2009, 15 (02) :249-258