Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades

被引:22
作者
Zhu, Jie [1 ,2 ]
Cai, Xin [2 ]
Gu, Rongrong [2 ]
机构
[1] Jiaxing Univ, Coll Civil Engn & Architecture, Jiaxing 314001, Peoples R China
[2] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
来源
ENERGIES | 2016年 / 9卷 / 02期
关键词
integrated optimization design; horizontal axis wind turbine; multi-objective optimization; annual energy production; blade mass; FINITE-ELEMENT-METHOD; GENETIC ALGORITHM; EVOLUTIONARY COMPUTATION; NSGA-II;
D O I
10.3390/en9020066
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT) blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM) theory, a structural analysis module employing the Finite Element Method (FEM) and a multi-objective optimization module utilizing the non-dominated sorting genetic algorithm. The former two provide a sufficiently accurate solution of the aerodynamic and structural performances of the blade; the latter handles the design variables of the optimization problem, namely, the main geometrical shape and structural parameters of the blade, and promotes function optimization. The scope of the procedure is to achieve the best trade-off performances between the maximum Annual Energy Production (AEP) and the minimum blade mass under various design requirements. To prove the efficiency and reliability of the procedure, a commercial 1.5 megawatt (MW) HAWT blade is used as a case study. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 2015, WORLD WIND EN MARK U
[2]   Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation [J].
Benini, E ;
Toffolo, A .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (04) :357-363
[3]   Multi-disciplinary constrained optimization of wind turbines [J].
Bottasso, C. L. ;
Campagnolo, F. ;
Croce, A. .
MULTIBODY SYSTEM DYNAMICS, 2012, 27 (01) :21-53
[4]   Structural efficiency of a wind turbine blade [J].
Buckney, Neil ;
Pirrera, Alberto ;
Green, Steven D. ;
Weaver, Paul M. .
THIN-WALLED STRUCTURES, 2013, 67 :144-154
[5]  
Burton T, 2011, WIND ENERGY HDB, DOI DOI 10.1002/9781119992714
[6]   Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method [J].
Cai, Xin ;
Zhu, Jie ;
Pan, Pan ;
Gu, Rongrong .
ENERGIES, 2012, 5 (11) :4683-4696
[7]   Structural optimization study of composite wind turbine blade [J].
Chen, Jin ;
Wang, Quan ;
Shen, Wen Zhong ;
Pang, Xiaoping ;
Li, Songlin ;
Guo, Xiaofeng .
MATERIALS & DESIGN, 2013, 46 :247-255
[8]   Multi-objective structural optimization of a HAWT composite blade [J].
Dal Monte, Andrea ;
Castelli, Marco Raciti ;
Benini, Ernesto .
COMPOSITE STRUCTURES, 2013, 106 :362-373
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]  
GASCH R., 2011, Wind power plants: fundamentals, design, construction and operation