RESPONSE OF SOIL MICROBIAL BIOMASS TO DROUGHT STRESS AND ATMOSPHERIC CO2 DOUBLING

被引:0
作者
Qian, Jinping [1 ,2 ]
Qu, Kaiyue [3 ]
Li, Yunyan [4 ]
机构
[1] Hebei Normal Univ, Coll Resources & Environm Sci, Shijiazhuang 050016, Hebei, Peoples R China
[2] Hebei Key Lab Environm Change & Ecol Construct, Shijiazhuang 050016, Hebei, Peoples R China
[3] Hebei Coll Ind & Technol, Dept Environm & Chem Engn, Shijiazhuang 050091, Hebei, Peoples R China
[4] Beijing Univ Technol, Inst Circular Econ, Beijing 100124, Peoples R China
来源
FRESENIUS ENVIRONMENTAL BULLETIN | 2019年 / 28卷 / 11期
基金
中国国家自然科学基金;
关键词
Soil; microbes; drought; CO2; doubling; ELEVATED CO2; TALLGRASS PRAIRIE; FOREST ECOSYSTEMS; CARBON-DIOXIDE; NITROGEN; DYNAMICS; COMMUNITY; PHOTOSYNTHESIS; RESPIRATION;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil microbe plays an important role in terrestrial ecosystem, and it is the core of the biological geochemical cycle, which has a significant impact on the process of material circulation and transformation and energy flow in soil ecosystem. In this study, a short-term indoor culture experiment has been carried out with seedlings soybean (Yudou 19) as the test plant. Three kinds of soil water gradient(80%, 60%, 40% WHC) and two kinds of CO2 concentrations (350 ppm, 700 ppm) were set to study the changes of soil microbial biomass, soil microbial community structure and functional diversity under the control of environmental factors, and to discuss the response law of soil microbes to simulated climate change (drought and atmospheric CO2 doubling), so as to provide a new idea for the exploration of the possibility of soil microbial enhancing or weakening global climate change. Atmospheric CO2 doubling can significantly promote plant photosynthesis and can alleviate and compensate the inhibition of drought stress on plant photosynthesis in a certain range. Drought stress will result in a significant increase in the content of soluble organic carbon in soil, while CO2 doubling have no significant effect on the content of soluble organic carbon in soil. Therefore, it is possible for atmospheric CO2 doubling to accelerate the transformation of soil carbohydrates, increase the rate of degradation of soil organic carbon pool by increasing microbial biomass, and have a negative impact on climate change. While drought stress could release the circulation of soil carbon pool to some extent.
引用
收藏
页码:7684 / 7694
页数:11
相关论文
共 50 条
  • [21] Does drought stress eliminate the benefit of elevated CO2 on soybean yield? Using an improved model to link crop and soil water relations
    Sun, Wenguang
    Fleisher, David
    Timlin, Dennis
    Ray, Chittaranjan
    Wang, Zhuangji
    Sahila, Beegum
    Reddy, Vangimalla
    AGRICULTURAL AND FOREST METEOROLOGY, 2023, 343
  • [22] Response of stratospheric water vapour to CO2 doubling in WACCM
    Wang, Tongmei
    Zhang, Qiong
    Kuilman, Maartje
    Hannachi, Abdel
    CLIMATE DYNAMICS, 2020, 54 (11-12) : 4877 - 4889
  • [23] Interaction between drought and elevated CO2 in the response of alfalfa plants to oxidative stress
    Sgherri, CLM
    Salvateci, P
    Menconi, M
    Raschi, A
    Navari-Izzo, F
    JOURNAL OF PLANT PHYSIOLOGY, 2000, 156 (03) : 360 - 366
  • [24] Effects of elevated CO2 and drought on the microbial biomass and enzymatic activities in the rhizospheres of two grass species in Chinese loess soil
    Xue, Sha
    Yang, Xiaomei
    Liu, Guobin
    Gai, Lingtong
    Zhang, Changsheng
    Ritsema, Coen J.
    Geissen, Violette
    GEODERMA, 2017, 286 : 25 - 34
  • [25] Elevated CO2 Concentration and Drought Stress Exert Opposite Effects on Plant Biomass, Nitrogen, and Phosphorus Allocation in Bothriochloa ischaemum
    Xiao, Lie
    Liu, Guo-bin
    Xue, Sha
    JOURNAL OF PLANT GROWTH REGULATION, 2016, 35 (04) : 1088 - 1097
  • [26] Microbial Activity in a Temperate Forest Soil as Affected by Elevated Atmospheric CO2
    ZHENG Jun-Qiang
    Pedosphere, 2010, 20 (04) : 427 - 435
  • [27] Regional Atmospheric CO2 Response to Ecosystem CO2 Budgets in China
    Li, Haixiao
    Lian, Yi
    Renyang, Qianqian
    Liu, Le
    Qu, Zihan
    Lee, Lien-Chieh
    REMOTE SENSING, 2023, 15 (13)
  • [28] Closing extra CO2 into plants for simultaneous CO2 fixation, drought stress alleviation and nutrient absorption enhancement
    Liang, Feihong
    Yang, Wenjie
    Xu, Lang
    Ji, Long
    He, Qingyao
    Wu, Lanlan
    Ran, Yi
    Yan, Shuiping
    JOURNAL OF CO2 UTILIZATION, 2020, 42
  • [29] Soil acidification induced by elevated atmospheric CO2
    Oh, NH
    Richter, DD
    GLOBAL CHANGE BIOLOGY, 2004, 10 (11) : 1936 - 1946