RESPONSE OF SOIL MICROBIAL BIOMASS TO DROUGHT STRESS AND ATMOSPHERIC CO2 DOUBLING

被引:0
|
作者
Qian, Jinping [1 ,2 ]
Qu, Kaiyue [3 ]
Li, Yunyan [4 ]
机构
[1] Hebei Normal Univ, Coll Resources & Environm Sci, Shijiazhuang 050016, Hebei, Peoples R China
[2] Hebei Key Lab Environm Change & Ecol Construct, Shijiazhuang 050016, Hebei, Peoples R China
[3] Hebei Coll Ind & Technol, Dept Environm & Chem Engn, Shijiazhuang 050091, Hebei, Peoples R China
[4] Beijing Univ Technol, Inst Circular Econ, Beijing 100124, Peoples R China
来源
FRESENIUS ENVIRONMENTAL BULLETIN | 2019年 / 28卷 / 11期
基金
中国国家自然科学基金;
关键词
Soil; microbes; drought; CO2; doubling; ELEVATED CO2; TALLGRASS PRAIRIE; FOREST ECOSYSTEMS; CARBON-DIOXIDE; NITROGEN; DYNAMICS; COMMUNITY; PHOTOSYNTHESIS; RESPIRATION;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil microbe plays an important role in terrestrial ecosystem, and it is the core of the biological geochemical cycle, which has a significant impact on the process of material circulation and transformation and energy flow in soil ecosystem. In this study, a short-term indoor culture experiment has been carried out with seedlings soybean (Yudou 19) as the test plant. Three kinds of soil water gradient(80%, 60%, 40% WHC) and two kinds of CO2 concentrations (350 ppm, 700 ppm) were set to study the changes of soil microbial biomass, soil microbial community structure and functional diversity under the control of environmental factors, and to discuss the response law of soil microbes to simulated climate change (drought and atmospheric CO2 doubling), so as to provide a new idea for the exploration of the possibility of soil microbial enhancing or weakening global climate change. Atmospheric CO2 doubling can significantly promote plant photosynthesis and can alleviate and compensate the inhibition of drought stress on plant photosynthesis in a certain range. Drought stress will result in a significant increase in the content of soluble organic carbon in soil, while CO2 doubling have no significant effect on the content of soluble organic carbon in soil. Therefore, it is possible for atmospheric CO2 doubling to accelerate the transformation of soil carbohydrates, increase the rate of degradation of soil organic carbon pool by increasing microbial biomass, and have a negative impact on climate change. While drought stress could release the circulation of soil carbon pool to some extent.
引用
收藏
页码:7684 / 7694
页数:11
相关论文
共 50 条
  • [1] A doubling of atmospheric CO2 mitigates the effects of severe drought on maize through the preservation of soil water
    Ripley, B. S.
    Bopape, T. M.
    Vetter, S.
    ANNALS OF BOTANY, 2022, 129 (05) : 607 - 618
  • [2] Global patterns and controls of the soil microbial biomass response to elevated CO2
    Li, Shucheng
    Xie, Shu
    Zhang, Shijie
    Miao, Shilin
    Tang, Shiming
    Chen, Hongyang
    Zhan, Qiuwen
    GEODERMA, 2022, 428
  • [3] Effect of soil CO2 concentration on microbial biomass
    H. Šantrůčková
    M. Šimek
    Biology and Fertility of Soils, 1997, 25 : 269 - 273
  • [4] Effect of soil CO2 concentration on microbial biomass
    Santruckova, H
    Simek, M
    BIOLOGY AND FERTILITY OF SOILS, 1997, 25 (03) : 269 - 273
  • [5] Soil microbial feedbacks to atmospheric CO2 enrichment
    Hu, SJ
    Firestone, MK
    Chapin, FS
    TRENDS IN ECOLOGY & EVOLUTION, 1999, 14 (11) : 433 - 437
  • [6] Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem
    Lipson, DA
    Wilson, RF
    Oechel, WC
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) : 8573 - 8580
  • [7] Elevated atmospheric CO2 alleviates drought stress in wheat
    Wall, GW
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2001, 87 (03) : 261 - 271
  • [8] Soil microbial responses to increased concentrations of atmospheric CO2
    Sadowsky, MJ
    Schortemeyer, M
    GLOBAL CHANGE BIOLOGY, 1997, 3 (03) : 217 - 224
  • [9] Atmospheric CO2 and the composition and function of soil microbial communities
    Zak, DR
    Pregitzer, KS
    Curtis, PS
    Holmes, WE
    ECOLOGICAL APPLICATIONS, 2000, 10 (01) : 47 - 59
  • [10] EFFECTS OF ELEVATED ATMOSPHERIC CO2, O3 AND SOIL PHENANTHRENE ON SOIL ENZYME ACTIVITIES AND MICROBIAL BIOMASS
    Dong, D.
    Shi, C.
    Yan, S.
    Ashraf, M. A.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (04): : 8501 - 8512