Analytical soliton solutions for the cubic-quintic nonlinear Schrodinger equation with Raman effect in the nonuniform management systems

被引:23
|
作者
Wang, Ping [1 ,2 ]
Feng, Li [1 ,3 ]
Shang, Tao [1 ]
Guo, Lixin [2 ]
Cheng, Guanghua [4 ]
Du, Yingjie [5 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Peoples R China
[3] Zhuhai Comleader Informat Sci & Technol Co Ltd, Zhengzhou 450008, Peoples R China
[4] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[5] NW Univ Xian, Dept Phys, Xian 710069, Peoples R China
基金
中国博士后科学基金;
关键词
Soliton; Similarity transformation method; Nonuniform fiber systems; Kundu-Eckhaus equation; PROPAGATION; DISPERSION; WAVES;
D O I
10.1007/s11071-014-1672-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on the Kundu-Eckhaus equation with variable coefficients, the exact one-soliton and two-soliton solutions have been explicitly given by an appropriate similarity transformation method. As an example, an exponential distributed fiber control system, nonlinearity management system and dispersion management system have been considered, and the propagation characteristics of the exact soliton solutions in the three nonuniform management systems have been investigated in detail. Especially, the dynamic properties of the amplitude, pulse width and the central position of the soliton with transmission distance have been studied. The results have some guiding significance for soliton amplification, compression and control management, and can provide some theoretical analysis for carrying out optical soliton communication experiment.
引用
收藏
页码:387 / 395
页数:9
相关论文
共 50 条
  • [41] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    CHINESE PHYSICS B, 2012, 21 (05)
  • [42] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [43] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [44] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [45] Soliton solutions of cubic-quintic nonlinear Schrodinger equation with combined time-dependent magnetic-optical potentials
    Li, H. M.
    Zhao, J. Q.
    You, L. Y.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (10) : 1065 - 1075
  • [46] Drag force in bimodal cubic-quintic nonlinear Schrodinger equation
    Feijoo, David
    Ordonez, Ismael
    Paredes, Angel
    Michinel, Humberto
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [47] Periodic and solitary waves of the cubic-quintic nonlinear Schrodinger equation
    Hong, L
    Beech, R
    Osman, F
    He, XT
    Lou, SY
    Hora, H
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 415 - 429
  • [48] Soliton Solutions of Cubic-Quintic Nonlinear Schrodinger and Variant Boussinesq Equations by the First Integral Method
    Seadawy, Aly
    Sayed, A.
    FILOMAT, 2017, 31 (13) : 4199 - 4208
  • [49] Exact solutions of a two-dimensional cubic-quintic discrete nonlinear Schrodinger equation
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    PHYSICA SCRIPTA, 2011, 84 (06)
  • [50] Solitons for the cubic-quintic nonlinear Schrödinger equation with Raman effect in nonlinear optics
    Ping Wang
    Tao Shang
    Li Feng
    Yingjie Du
    Optical and Quantum Electronics, 2014, 46 : 1117 - 1126