Analytical soliton solutions for the cubic-quintic nonlinear Schrodinger equation with Raman effect in the nonuniform management systems

被引:23
|
作者
Wang, Ping [1 ,2 ]
Feng, Li [1 ,3 ]
Shang, Tao [1 ]
Guo, Lixin [2 ]
Cheng, Guanghua [4 ]
Du, Yingjie [5 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Peoples R China
[3] Zhuhai Comleader Informat Sci & Technol Co Ltd, Zhengzhou 450008, Peoples R China
[4] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[5] NW Univ Xian, Dept Phys, Xian 710069, Peoples R China
基金
中国博士后科学基金;
关键词
Soliton; Similarity transformation method; Nonuniform fiber systems; Kundu-Eckhaus equation; PROPAGATION; DISPERSION; WAVES;
D O I
10.1007/s11071-014-1672-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on the Kundu-Eckhaus equation with variable coefficients, the exact one-soliton and two-soliton solutions have been explicitly given by an appropriate similarity transformation method. As an example, an exponential distributed fiber control system, nonlinearity management system and dispersion management system have been considered, and the propagation characteristics of the exact soliton solutions in the three nonuniform management systems have been investigated in detail. Especially, the dynamic properties of the amplitude, pulse width and the central position of the soliton with transmission distance have been studied. The results have some guiding significance for soliton amplification, compression and control management, and can provide some theoretical analysis for carrying out optical soliton communication experiment.
引用
收藏
页码:387 / 395
页数:9
相关论文
共 50 条
  • [31] A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Hao, RY
    Li, L
    Li, ZH
    Yang, RC
    Zhou, GS
    OPTICS COMMUNICATIONS, 2005, 245 (1-6) : 383 - 390
  • [32] Jacobian elliptic function solutions of the discrete cubic-quintic nonlinear Schrodinger equation
    Tiofack, G. C. Latchio
    Mohamadou, Alidou
    Kofane, T. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6133 - 6145
  • [33] New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrodinger Equation
    Xie, Yongan
    Tang, Shengqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [34] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schroedinger equation
    Schürmann, H.W.
    Serov, V.S.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 B): : 2821 - 2826
  • [35] STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL
    Kengne, E.
    Vaillancourt, R.
    NONLINEAR OSCILLATIONS, 2011, 13 (04): : 569 - 583
  • [36] Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity
    Kudryashov, Nikolay A.
    OPTIK, 2019, 188 : 27 - 35
  • [37] New exact solutions to the high dispersive cubic-quintic nonlinear Schrodinger equation
    Xie, Yingying
    Yang, Zhaoyu
    Li, Lingfei
    PHYSICS LETTERS A, 2018, 382 (36) : 2506 - 2514
  • [38] Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation
    Azzouzi, F.
    Triki, H.
    Mezghiche, K.
    El Akrmi, A.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1304 - 1307
  • [39] ANALYTICAL DYNAMICS ON THE OPTICAL LOSSLESS CUBIC-QUINTIC SCHRODINGER EQUATION
    Grado-Caffaro, M. A.
    Grado-Caffaro, M.
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 69 (02) : 229 - 234
  • [40] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    CHINESE PHYSICS B, 2016, 25 (05)