Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars

被引:12
|
作者
Mahmoud, Ouissal Metoui-Ben [1 ]
Ben Slimene, Imen [2 ]
Zribi, Ons Talbi [1 ]
Abdelly, Chedly [1 ]
Djebali, Naceur [2 ]
机构
[1] Ctr Biotechnol Borj Cedria, Lab Extremophile Plants, BP 901, Hammam Lif 2050, Tunisia
[2] Ctr Biotechnol Borj Cedria, Lab Bioact Subst, BP 901, Hammam Lif 2050, Tunisia
关键词
Hordeum vulgare; Bacillus; PGPR bacteria; Pseudomonas; Salinity; Water content; PLANT-GROWTH; BACTERIAL ENDOPHYTES; SALINITY; TOLERANCE; RHIZOSPHERE; TRANSPORT; ROOTS; PGPR; ACID;
D O I
10.1007/s11738-017-2421-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
There is an increasing interest for plant growth-promoting rhizobacteria (PGPR), particularly those associated with plants originating from extreme environments like saline habitats. We are assessing, here, whether the inoculation with three PGPR bacteria strains isolated from the rhizosphere of Hordeum maritimum naturally growing in saline soil could mitigate the impact of high salinity (200 mM of NaCl) on two contrasting local barley cultivars. The affinity of interaction between plant and bacteria in response to this environmental constraint was also evaluated. At 200 mM of NaCl, the strains S1 of Bacillus mojavensis and S2 of B. pumilus maintained the highest level of indole acetic acid production and the strain S3 of Pseudomonas fluorescens the highest number of viable cells. In the salt-sensitive cultivar Rihane, salinity reduced significantly plant biomass, chlorophyll and shoots water contents and enhanced malondialdehyde leaf content. Salt impact was also related to higher Na+ uptake. However, these parameters were slightly altered under salinity in the tolerant cultivar Kerkna which is likely due to its ability to transport Na+ to shoots for osmotic adjustment. The effect of bacteria inoculation on barley growth and tolerance to salt stress was dependent on the bacteria and cultivar genotypes and their interactions with the salinity of the soil. At 0 mM of NaCl the strain S2 increased significantly the plant fresh biomass of both cultivars. At 200 mM of NaCl, a positive effect on Rihane plant biomass was observed after S1 strain inoculation, while the Kerkna plant biomass did not change significantly after bacteria inoculation. Overall, the sensitive cultivar Rihane responds better to bacteria inoculation in comparison to the tolerant cultivar under control and salt conditions, which demonstrate a certain affinity of interaction between plant cultivar and bacterium strain modulated by the salinity of the soil. The multitude of soil-plant-microbe interactions, and in particular this affinity-effect observed between plants and rhizobacteria modulated by soil conditions, constitute a challenge for developing bio-promoting inoculum at the commercial level. This constraint can possibly be managed by developing an inoculum containing a consortium of PGPR bacterial strains having broad spectrum interactions with different plant cultivars that function optimally under several environmental constraints.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Isolation and assessment of halophilic rhizobacteria plant growth-promoting traits for alleviating salt stress in wheat
    Sezen, Alev
    Algur, Omer Faruk
    Asci, Ferruh
    Unal, Arzu
    TURKISH JOURNAL OF BOTANY, 2024, 48 (02) : 79 - 90
  • [22] Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress
    Rabiei, Zahra
    Hosseini, Seyyed Jaber
    Pirdashti, Hemmatollah
    Hazrati, Saeid
    HELIYON, 2020, 6 (10)
  • [23] Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria
    del Rosario Cappellari, Lorena
    Valeria Santoro, Maricel
    Nievas, Fiorela
    Giordano, Walter
    Banchio, Erika
    APPLIED SOIL ECOLOGY, 2013, 70 : 16 - 22
  • [24] Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea
    Wu, SC
    Cheung, KC
    Luo, YM
    Wong, MH
    ENVIRONMENTAL POLLUTION, 2006, 140 (01) : 124 - 135
  • [25] Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization
    Ozturk, A
    Caglar, O
    Sahin, F
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2003, 166 (02) : 262 - 266
  • [26] Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria
    Mitra, Debasis
    Rodriguez, Alondra M. Diaz
    Cota, Fannie I. Parra
    Khoshru, Bahman
    Panneerselvam, Periyasamy
    Moradi, Shokufeh
    Sagarika, Mahapatra Smruthi
    Andelkovic, Snezana
    de los Santos-Villalobos, Sergio
    Mohapatra, Pradeep K. Das
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2021, 115
  • [27] Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress
    Nadeem, Sajid M.
    Zahir, A. Zahir
    Naveed, M.
    Arshad, M.
    Shahzad, S. M.
    SOIL & ENVIRONMENT, 2006, 25 (02) : 78 - 84
  • [28] Quinoa Response to Application of Phosphogypsum and Plant Growth-Promoting Rhizobacteria under Water Stress Associated with Salt-Affected Soil
    El-Shamy, Moshira A.
    Alshaal, Tarek
    Mohamed, Hossam Hussein
    Rady, Asmaa M. S.
    Hafez, Emad M.
    Alsohim, Abdullah S.
    Abd El-Moneim, Diaa
    PLANTS-BASEL, 2022, 11 (07):
  • [29] Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure
    Estes, BL
    Enebak, SA
    Chappelka, AH
    CANADIAN JOURNAL OF FOREST RESEARCH, 2004, 34 (07) : 1410 - 1416
  • [30] Stress mitigation strategies of plant growth-promoting rhizo-bacteria: Plant growth-promoting rhizobacteria mechanisms
    Sharma, Vriti
    Singh, Aakriti
    Sharma, Diksha
    Sharma, Aashima
    Phogat, Sarika
    Chakraborty, Navjyoti
    Chatterjee, Sayan
    Purty, Ram Singh
    PLANT SCIENCE TODAY, 2021, 8 : 25 - 32