Cuspidality and the growth of Fourier coefficients: small weights

被引:3
作者
Boecherer, Siegfried [1 ]
Das, Soumya [2 ]
机构
[1] Univ Mannheim, Inst Math, D-68131 Mannheim, Germany
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Small weights; Siegel modular forms; Growth of Fourier coefficients; Hecke bound; SIEGEL CUSP FORMS; SERIES;
D O I
10.1007/s00209-015-1609-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize Siegel cusp forms in the space of Siegel modular forms of small weight on the congruence subgroups of any degree n and any level N, by a suitable growth of their Fourier coefficients (e.g., by the well known Hecke bound) at any one of the cusps. For this, we use the formalism of Jacobi forms and the 'Witt-operator' on modular forms.
引用
收藏
页码:539 / 553
页数:15
相关论文
共 50 条
[21]   Non-vanishing of fundamental Fourier coefficients of paramodular forms [J].
Marzec, Jolanta .
JOURNAL OF NUMBER THEORY, 2018, 182 :311-324
[22]   On p-divisibility of Fourier coefficients of Siegel modular forms [J].
Shoyu Nagaoka .
The Ramanujan Journal, 2023, 62 :1107-1123
[23]   On p-divisibility of Fourier coefficients of Siegel modular forms [J].
Nagaoka, Shoyu .
RAMANUJAN JOURNAL, 2023, 62 (04) :1107-1123
[24]   U-convergence of Fourier series with monotone and with positive coefficients [J].
D'yachenko, MI .
MATHEMATICAL NOTES, 2001, 70 (3-4) :320-328
[25]   Estimates for the Fourier coefficients of the Duke-Imamoglu-Ikeda lift [J].
Ikeda, Tamotsu ;
Katsurada, Hidenori .
FORUM MATHEMATICUM, 2023, 35 (04) :975-990
[26]   A note on Fourier-Jacobi coefficients of Siegel modular forms [J].
Sanoli Gun ;
Narasimha Kumar .
Archiv der Mathematik, 2013, 101 :519-524
[27]   On degree 2 Siegel cusp forms and its Fourier coefficients [J].
Martin, Yves .
JOURNAL OF NUMBER THEORY, 2020, 208 :346-366
[28]   A note on Fourier-Jacobi coefficients of Siegel modular forms [J].
Gun, Sanoli ;
Kumar, Narasimha .
ARCHIV DER MATHEMATIK, 2013, 101 (06) :519-524
[30]   ON SIGN CHANGES OF PRIMITIVE FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS [J].
Shankhadhar, Karam Deo ;
Tiwari, Prashant .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2023, 68 (02) :257-274