ROGUE WAVE STRUCTURE AND FORMATION MECHANISM IN THE COUPLED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Li, Zaidong [1 ,2 ]
Wei, Hongchen [2 ]
He, Pengbin [3 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
[2] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
rogue wave; coupled nonlinear Schrodinger equations; formation mechanism; non-uniform energy exchange rate; SOLITON; OSCILLATIONS; INSTABILITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the method of Darboux transformation, we solve the coupled nonlinear Schrodinger equations and obtain different types of exact rogue wave solutions. By adjusting the parameters of the dynamical model, we get a variety of rogue wave structures, namely bright, dark, and eye-shaped rogue waves. Also, their key characteristics are discussed in detail. We find that the non-uniform exchange rate of energy between the rogue wave and the continuous wave background can be adequately used to describe the formation mechanism of rogue waves in the coupled nonlinear Schrodinger equations.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves
    Baronio, Fabio
    Degasperis, Antonio
    Conforti, Matteo
    Wabnitz, Stefan
    PHYSICAL REVIEW LETTERS, 2012, 109 (04)
  • [42] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [43] Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrodinger equation
    Wen, Li-Li
    Zhang, Hai-Qiang
    NONLINEAR DYNAMICS, 2016, 86 (02) : 877 - 889
  • [44] Numerical solution to coupled nonlinear Schrodinger equations on unbounded domains
    Zhou, Shenggao
    Cheng, Xiaoliang
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (12) : 2362 - 2373
  • [45] A note on coupled focusing nonlinear Schrodinger equations
    Saanouni, T.
    APPLICABLE ANALYSIS, 2016, 95 (09) : 2063 - 2080
  • [46] Variational principles for coupled nonlinear Schrodinger equations
    Xu, Lan
    PHYSICS LETTERS A, 2006, 359 (06) : 627 - 629
  • [47] Engineering optical rogue waves and breathers in a coupled nonlinear Schrodinger system with four-wave mixing effect
    Sakkaravarthi, K.
    Mareeswaran, R. Babu
    Kanna, T.
    PHYSICA SCRIPTA, 2020, 95 (09)
  • [48] The rogue wave of the nonlinear Schrodinger equation with self-consistent sources
    Huang, Yehui
    Jing, Hongqing
    Lin, Runliang
    Yao, Yuqin
    MODERN PHYSICS LETTERS B, 2018, 32 (30):
  • [49] Localized Symmetric and Asymmetric Solitary Wave Solutions of Fractional Coupled Nonlinear Schrodinger Equations
    Zhang, Sheng
    Zhu, Feng
    Xu, Bo
    SYMMETRY-BASEL, 2023, 15 (06):
  • [50] Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrodinger equations in an inhomogeneous optical fiber
    Du, Zhong
    Tian, Bo
    Chai, Han-Peng
    Sun, Yan
    Zhao, Xue-Hui
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 90 - 98