ROGUE WAVE STRUCTURE AND FORMATION MECHANISM IN THE COUPLED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Li, Zaidong [1 ,2 ]
Wei, Hongchen [2 ]
He, Pengbin [3 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
[2] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
rogue wave; coupled nonlinear Schrodinger equations; formation mechanism; non-uniform energy exchange rate; SOLITON; OSCILLATIONS; INSTABILITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the method of Darboux transformation, we solve the coupled nonlinear Schrodinger equations and obtain different types of exact rogue wave solutions. By adjusting the parameters of the dynamical model, we get a variety of rogue wave structures, namely bright, dark, and eye-shaped rogue waves. Also, their key characteristics are discussed in detail. We find that the non-uniform exchange rate of energy between the rogue wave and the continuous wave background can be adequately used to describe the formation mechanism of rogue waves in the coupled nonlinear Schrodinger equations.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation
    Liu Wei
    Qiu De-Qin
    He Jing-Song
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (05) : 525 - 534
  • [32] Breather and rogue wave solutions for a nonlinear Schrodinger-type system in plasmas
    Meng, Gao-Qing
    Qin, Jin-Lei
    Yu, Guo-Liang
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 739 - 751
  • [33] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [34] A note on coupled nonlinear Schrodinger equations
    Saanouni, Tarek
    ADVANCES IN NONLINEAR ANALYSIS, 2014, 3 (04) : 247 - 269
  • [35] Vector rogue waves and baseband modulation instability of coupled nonlinear Schrodinger equations for internal gravity waves
    Geng, Jingxuan
    Dong, Huanhe
    Xu, Jing
    Fu, Lei
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [36] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [37] LONG-TIME SIMULATIONS OF ROGUE WAVE SOLUTIONS IN THE NONLINEAR SCHRODINGER EQUATION
    ZHENG, C. H. E. N. X., I
    TANG, S. H. A. O. Q. I. A. N. G.
    METHODS AND APPLICATIONS OF ANALYSIS, 2022, 29 (01) : 149 - 160
  • [38] General rogue wave solution to the discrete nonlinear Schrodinger equation
    Ohta, Yasuhiro
    Feng, Bao-Feng
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 439
  • [39] Generation mechanism of rogue waves for the discrete nonlinear Schrodinger equation
    Li, Min
    Shui, Juan-Juan
    Xu, Tao
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 110 - 115
  • [40] High-order rogue waves of the coupled nonlinear Schrodinger equations with negative coherent coupling in an isotropic medium
    Sun, Wen-Rong
    Tian, Bo
    Xie, Xi-Yang
    Chai, Jun
    Jiang, Yan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 538 - 544