ROGUE WAVE STRUCTURE AND FORMATION MECHANISM IN THE COUPLED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Li, Zaidong [1 ,2 ]
Wei, Hongchen [2 ]
He, Pengbin [3 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
[2] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
rogue wave; coupled nonlinear Schrodinger equations; formation mechanism; non-uniform energy exchange rate; SOLITON; OSCILLATIONS; INSTABILITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the method of Darboux transformation, we solve the coupled nonlinear Schrodinger equations and obtain different types of exact rogue wave solutions. By adjusting the parameters of the dynamical model, we get a variety of rogue wave structures, namely bright, dark, and eye-shaped rogue waves. Also, their key characteristics are discussed in detail. We find that the non-uniform exchange rate of energy between the rogue wave and the continuous wave background can be adequately used to describe the formation mechanism of rogue waves in the coupled nonlinear Schrodinger equations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Rogue Waves in the Generalized Derivative Nonlinear Schrodinger Equations
    Yang, Bo
    Chen, Junchao
    Yang, Jianke
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 3027 - 3056
  • [22] Nonlinear wave-wave interaction and stability criterion for parametrically coupled nonlinear Schrodinger equations
    El-Dib, YO
    NONLINEAR DYNAMICS, 2001, 24 (04) : 399 - 418
  • [23] Soliton and Rogue Wave Solution of the New Nonautonomous Nonlinear Schrodinger Equation
    Wang You-Ying
    He Jing-Song
    Li Yi-Shen
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 995 - 1004
  • [24] Rogue Wave with a Controllable Center of Nonlinear Schrodinger Equation
    Wang Xiao-Chun
    He Jing-Song
    Li Yi-Shen
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (04) : 631 - 637
  • [25] A higher-order coupled nonlinear Schrodinger system: solitons, breathers, and rogue wave solutions
    Guo, Rui
    Zhao, Hui-Hui
    Wang, Yuan
    NONLINEAR DYNAMICS, 2016, 83 (04) : 2475 - 2484
  • [26] Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations
    李再东
    王洋洋
    贺鹏斌
    Chinese Physics B, 2019, (01) : 283 - 289
  • [27] Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation
    Guo, Ya-Hui
    Zuo, Da-Wei
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [28] Localized waves of the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Xu, Tao
    Chen, Yong
    Lin, Ji
    CHINESE PHYSICS B, 2017, 26 (12)
  • [29] Darboux transformation and classification of solution for mixed coupled nonlinear Schrodinger equations
    Ling, Liming
    Zhao, Li-Chen
    Guo, Boling
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 : 285 - 304
  • [30] From a breather homoclinic wave to a rogue wave solution for the coupled Schrodinger-Boussinesq equation
    Wang, Chuanjian
    Dai, Zhengde
    Liu, Changfu
    PHYSICA SCRIPTA, 2014, 89 (07)