ROGUE WAVE STRUCTURE AND FORMATION MECHANISM IN THE COUPLED NONLINEAR SCHRODINGER EQUATIONS

被引:0
作者
Li, Zaidong [1 ,2 ]
Wei, Hongchen [2 ]
He, Pengbin [3 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
[2] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
rogue wave; coupled nonlinear Schrodinger equations; formation mechanism; non-uniform energy exchange rate; SOLITON; OSCILLATIONS; INSTABILITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the method of Darboux transformation, we solve the coupled nonlinear Schrodinger equations and obtain different types of exact rogue wave solutions. By adjusting the parameters of the dynamical model, we get a variety of rogue wave structures, namely bright, dark, and eye-shaped rogue waves. Also, their key characteristics are discussed in detail. We find that the non-uniform exchange rate of energy between the rogue wave and the continuous wave background can be adequately used to describe the formation mechanism of rogue waves in the coupled nonlinear Schrodinger equations.
引用
收藏
页数:15
相关论文
共 73 条
[51]   Matter rogue waves in an F=1 spinor Bose-Einstein condensate [J].
Qin, Zhenyun ;
Mu, Gui .
PHYSICAL REVIEW E, 2012, 86 (03)
[52]   LAUNCHING A DAVYDOV SOLITON .1. SOLITON ANALYSIS [J].
SCOTT, AC .
PHYSICA SCRIPTA, 1984, 29 (03) :279-283
[53]   Optical rogue waves [J].
Solli, D. R. ;
Ropers, C. ;
Koonath, P. ;
Jalali, B. .
NATURE, 2007, 450 (7172) :1054-U7
[54]   The hierarchy of multi-soliton solutions of the derivative nonlinear Schrodinger equation [J].
Steudel, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1931-1946
[55]   Backlund transformations between the AKNS and DNLS hierarchies [J].
Vekslerchik, V. E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (46)
[56]   Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrodinger equations [J].
Vijayajayanthi, M. ;
Kanna, T. ;
Lakshmanan, M. .
PHYSICAL REVIEW A, 2008, 77 (01)
[57]   Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrodinger equation [J].
Wen, Xiao-Yong ;
Yang, Yunqing ;
Yan, Zhenya .
PHYSICAL REVIEW E, 2015, 92 (01)
[58]   Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate [J].
Williams, J ;
Walser, R ;
Cooper, J ;
Cornell, E ;
Holland, M .
PHYSICAL REVIEW A, 1999, 59 (01) :R31-R34
[59]  
Williams J., 1999, PHYS REV A, V61
[60]   NOTE ON THE DARBOUX TRANSFORMATION FOR THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
XIAO, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (01) :363-366