ROGUE WAVE STRUCTURE AND FORMATION MECHANISM IN THE COUPLED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Li, Zaidong [1 ,2 ]
Wei, Hongchen [2 ]
He, Pengbin [3 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
[2] Hebei Univ Technol, Dept Appl Phys, Tianjin 300401, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
rogue wave; coupled nonlinear Schrodinger equations; formation mechanism; non-uniform energy exchange rate; SOLITON; OSCILLATIONS; INSTABILITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the method of Darboux transformation, we solve the coupled nonlinear Schrodinger equations and obtain different types of exact rogue wave solutions. By adjusting the parameters of the dynamical model, we get a variety of rogue wave structures, namely bright, dark, and eye-shaped rogue waves. Also, their key characteristics are discussed in detail. We find that the non-uniform exchange rate of energy between the rogue wave and the continuous wave background can be adequately used to describe the formation mechanism of rogue waves in the coupled nonlinear Schrodinger equations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Breather and rogue wave solutions of coupled derivative nonlinear Schrodinger equations
    Xiang, Xiao-Shuo
    Zuo, Da-Wei
    NONLINEAR DYNAMICS, 2022, 107 (01) : 1195 - 1204
  • [2] Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrodinger equations
    Li, Zai-Dong
    Wang, Yang-yang
    He, Peng-Bin
    CHINESE PHYSICS B, 2019, 28 (01)
  • [3] Rogue Wave Type Solutions and Spectra of Coupled Nonlinear Schrodinger Equations
    Degasperis, Antonio
    Lombardo, Sara
    Sommacal, Matteo
    FLUIDS, 2019, 4 (01)
  • [4] Breathers and rogue waves: Demonstration with coupled nonlinear Schrodinger family of equations
    Priya, N. Vishnu
    Senthilvelan, M.
    Lakshmanan, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 84 (03): : 339 - 352
  • [5] Rogue waves for a system of coupled derivative nonlinear Schrodinger equations
    Chan, H. N.
    Malomed, B. A.
    Chow, K. W.
    Ding, E.
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [6] On the characterization of breather and rogue wave solutions and modulation instability of a coupled generalized nonlinear Schrodinger equations
    Priya, N. Vishnu
    Senthilvelan, M.
    WAVE MOTION, 2015, 54 : 125 - 133
  • [7] Rogue wave solutions for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients
    Qi, Feng-Hua
    Xu, Xiao-Ge
    Wang, Pan
    APPLIED MATHEMATICS LETTERS, 2016, 54 : 60 - 65
  • [8] Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrodinger equations
    Li, Zai-Dong
    Huo, Cong-Zhe
    Li, Qiu-Yan
    He, Peng-Bin
    Xu, Tian-Fu
    CHINESE PHYSICS B, 2018, 27 (04)
  • [9] Numerical computation for rogue waves in the coupled nonlinear Schrodinger equations with the coherent coupling effect
    Liu, Lei
    Wang, Pengde
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (12) : 2433 - 2448
  • [10] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation
    Feng, Lian-Li
    Zhang, Tian-Tian
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 133 - 140